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Abstract. In recent years, great progress has been made on the problem of 3D
scene reconstruction using depth sensors. On a large scale, these reconstructions
look impressive, but often many fine details are lacking due to limitations in the
sensor resolution. In this paper we combine two well-known principles for re-
covery of 3D models, namely fusion of depth images with photometric stereo
to enhance the details of the reconstructions. We derive a simple and transpar-
ent objective functional that takes both the observed intensity images and depth
information into account. The experimental results show that many details are
captured that are not present in the input depth images. Moreover, we provide a
quantitative evaluation that confirms the improvement of the resulting 3D recon-
struction using a 3D printed model.

1 Introduction

Three-dimensional object reconstruction is a classical problem in computer vision. It
is still a highly active research area, and we have witnessed steady progress on recov-
ering reliable and accurate representations of scene geometry. There is a wide range
of applications where fine-detailed 3D reconstructions play a central role, including
visualization, 3D printing, refurbishment and e-commerce.

Several different methods exist for recovering 3D scene geometry. Classical al-
gorithms include Structure from Motion [1, 2] which yields sparse point clouds and
multiple-view stereo [3, 4] which generates dense reconstructions. Since the advent of
the Microsoft Kinect, a lot of effort has been put into developing methods that can
create dense models directly from the depth images. KinectFusion [5] and extensions
like [6, 7] can reliably compute high-quality 3D models. However, due to limitations in
the resolution of the depth sensor, fine details are often missed in the reconstruction.

To obtain highly detailed 3D models, a common approach is to use photometric
stereo [8, 9], which can capture fine details under the assumption of a Lambertian sur-
face [10, Chapter 2]. This technique originates from Shape-from-Shading [11] where
surface normals are estimated from a single image. Shape-from-Shading is often con-
sidered to be an ill-posed problem. In contrast, photometric stereo uses several images
with varying illumination of the same scene, which makes the problem of recovering
surface normals well-posed with known lighting. Although some works that utilize mul-
tiple views exist, e.g. [12], many methods require that the images are captured from the
same view point [9].
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Fig. 1: Out method first fuses all depth images into a single coarse 3D reconstruction
without details. This fused 3D model and the intensity images with varying illumination
are used to compute a refined 3D model with fine-scale details.

The advantages with our formulation are manifold. Many papers that combine depth
images and shading only refine a single depth image [13–17]. How to fuse refined depth
images from multiple views is not a trivial task. In contrast, we derive an energy func-
tional on the surface using a Truncated Signed Distance Function (TSDF) [18]. This has
the advantage that we can combine measurements from different views and refine the
whole model at once. Another benefit is that the implicit representation makes it easy
to estimate normals since these are directly obtained from the gradient of the TSDF.

Our main contribution is that we derive an objective functional using a TSDF [18]
as a parametrization of the surface. This functional takes both intensity and depth in-
formation into account together with a varying light source and allows us to handle
data captured from different viewpoints. Figure 1 shows a schematic overview of our
method. We experimentally demonstrate on real imagery that this results in a system
that can recover finer details than current state-of-the-art depth fusion methods. Both
quantitative and qualitative evaluations are provided.

1.1 Related Work

Since the launch of the Kinect, several papers have tried to incorporate techniques
like Shape-from-Shading [11] into the reconstruction process to enhance the quality
of the depth images. For example, [13] improves the entire depth image by estimat-
ing the shading and reflectance from a single image. In [14–17], Shape-from-Shading
techniques are applied in conjunction with RGB-D images. These approaches typically
employ strong priors such as piece-wise constant albedo to constrain the optimization
problem. The depth image is often used as a means to resolve the Bas-Relief ambigu-
ity [19]. The idea is to separate albedo and shading to catch fine surface details that are
not visible in the depth image. In [20] a fixed depth sensor captures multiple images
under varying illumination. Super-resolution and photometric stereo are then combined
in a variational framework to get a more detailed depth image. All papers above have
in common that they try to obtain a high resolution depth image. In contrast, we work
directly over the entire surface and take all views simultaneously into account.

The most closely related work to ours are [21] are [22], where the 3D model is
encoded in a TSDF surface representation [18] and refined using Shape-from-Shading
techniques. In [21] the fused color information and the fused depth information in the
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voxel grid are incorporated in a shading based energy functional. The resulting func-
tional is optimized to get an improved reconstruction. Just recently, [22] extended and
improved [21] by approximating multiple static light sources to better model the illu-
mination. They additionally used the input intensity images instead of the fused color
to measure the difference between rendered intensity gradient and observed intensity
gradient. Both [21] and [22] regularize the surface with a Laplacian and the albedo
by measuring chromaticity differences between neighboring voxels. Furthermore, [22]
also regularizes the light sources with a Laplacian.

In this paper we investigate how one can benefit from the TSDF representation
and the observed color and depth images by using ideas from photometric stereo. The
main difference between [21, 22] and our work is that we allow the light source to vary
between the input RGB-D frames. The theoretical motivation to move both the light
source as well as the camera is that varying the light source generates richer data, in
contrast to keeping the light source fixed as in [21, 22].

Furthermore, in addition to the intensity error measure, our energy only has two
additional terms: an error penalty that measures deviations from the observed depth
maps and an albedo regularizer that penalizes large albedo changes between neighbor-
ing voxels. In contrast, both [21] and [22] require smoothness priors on the surface.
To the best of our knowledge, we are the first to combine photometric stereo with the
TSDF parametrization of the surface. Our results show that by illuminating the object
from different directions one can get both a smoother (where appropriate) and a more
detailed reconstruction without any explicit smoothness prior. Our results are also com-
pared to [22] and evaluated on a 3D printed model with ground truth data.

2 The Lambertian Surface Model

In this work we assume that the objects we are observing are diffuse. Under the Lam-
bertian reflectance model, the image intensity at a projected point is given by

I(π(x)) = ρ(x)sTn(x), (1)

where I is the observed grayscale image, π(x) is the projection of the 3D point x, ρ(x)
and n(x) are the per-voxel surface albedo and normal at x respectively, and s is the
lighting direction. We assume a rigid scene, hence only the position of the light source
and the camera are changing between consecutive input frames. Consequently, by il-
luminating the scene from varying directions, the observed intensity will be different
as visualized in Figure 2. We show that optimizing the illumination, the albedo and
the surface normals to generate image projections that agree with the observed image
results in a more detailed reconstruction.

To represent the surface and its albedo we use a TSDF [18], i.e. a voxel grid where
each voxel V consists of 8 corners. A corner is denoted with v and contains the two
values dv and ρv representing the estimated distance from v to the surface and the
albedo at v respectively. We use tri-linear interpolation between the voxel corners to
compute distance and albedo estimates within a voxel. We let gV : R3 × R8 → R be
an interpolation function that takes a point x within the voxel and the 8 corner values,
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Fig. 2: Two images captured from almost identical viewpoints, but with different illumi-
nation. The wrinkles appear differently in the two images, with more prominent details
on the right. This effect is caused by the varying light source and not by the surface.

either ρV = (ρv1 , ..., ρv8) or dV = (dv1 , ..., dv8), where vi ∈ V , and computes the
distance and albedo estimates gV (x,ρV ) and gV (x,dV ) at x.

The Lambertian model in Equation (1) also requires surface normals in order to
estimate image intensities. By normalizing the gradient we get the expression for the
normal at a surface point x ∈ V by

n(x,dV ) =
∇gV (x,dV )
‖∇gV (x,dV )‖

, (2)

where∇ is a spatial gradient with respect to x.
It was shown in [9] that general lighting conditions can often be better estimated

than Equation (1) by employing low-order spherical harmonics. Their formulation es-
sentially replaces n and s in Equation (1) with 9-dimensional vectors ñ and s̃, where
the elements of ñ are quadratic expressions in the elements of n. To compute ñ we thus
first compute n via Equation (2) and then use the quadratic functions from [9].

3 Objective Functional

In this section we derive our objective functional that consists of the three terms pre-
sented in the following sections.

3.1 Intensity Error Term

We first consider a term that takes the agreement between rendered intensity and the
observed image into account. Let us now assume that we have captured a sequence of
depth and intensity images D and I, respectively. We denote the depth image at time
step k by Dk and the corresponding gray-scale intensity image by Ik.

We assume that we have a set S of surface points that we project into the images and
a set of voxels V that contain the surface. In Section 3.2 we describe how these points
are extracted from the TSDF. Projecting a surface point x ∈ S contained in voxel V on
image k, we can extract the observed intensity at Ik(π(x)). Through the Lambertian
reflectance model, we should have

Ik(π(x)) ≈ ρ(x,ρV )ñ(x,dV )T s̃k. (3)
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Our first term penalizes deviations from this assumption using

ELambert(d,ρ, s̃
1, . . . , s̃K) =

K∑
k=1

∑
V ∈Vk

∑
x∈V ∩S

(Ik(π(x))− ρ(x,ρV )ñ(x,dV )T s̃k)2,

(4)

where Vk is the set of voxels containing the surface observed in frame k, dV and ρV
are the distances and the albedo in the voxel corners of V and x is a detected surface
point in voxel V . The set Vk is constructed by projecting all voxels in V into the depth
image Dk and keeping those that are close to the observed surface. Note that each view
has its own light source s̃k, allowing the lighting conditions to change between views.
This error term permits the normals, albedo and the light source to change so that the
observed intensities coincide with the rendered intensity. By varying the light source,
the same surface point will have different intensities in the images; using that, we seek
to improve the three-dimensional shape of the surface.

3.2 Sampling Surface Points

In order to evaluate Equation (4), we need to compute a set of surface points. Recall
that the surface is located in the zero crossing of the TSDF. Any voxel V that is in-
tersected by the surface has both positive and negative values among the distances
dV = (dv1 , ..., dv8) stored in the voxel corners (xv1 , . . . ,xv8). By randomly generating
N points {x̂n}Nn=1 in the voxel and computing their interpolations d̂n = gV (x̂n,dV ),
we get a set of points with signed distances {d̂n}Nn=1 to the surface. If d̂n is positive, we
match it to one of the corner points with negative distances and vice versa. This gives a
pair of points (xvi , x̂n), where the surface lies somewhere on the line segment defined
by these points. To find a surface point, we simply traverse the segment until we are
sufficiently close to the zero crossing.

3.3 Depth Error Term

The Lambertian term (4) is by itself not sufficient for estimating the normals, albedo and
light sources uniquely, due to the well known Generalized Bas-Relief ambiguity [19].
Additionally, while it gives good local normal estimates, computing the surface from
local orientation estimates alone is a sensitive process. When normals are integrated,
error buildup can cause large depth deviations if the surface depth is not sufficiently
constrained. To ensure uniqueness and constrain the overall surface depth, we include
information from the depth images.

We define the depth error term as

Edepth(d) =

K∑
k=1

∑
v∈Vk

(Dk(xv)− dv)2, (5)

where dv is the currently stored estimated distance to the surface for voxel corners v in
Vk as in [23].Dk(xv) is the estimated distance between observed surface and the voxel
in frame k, computed as in [23].
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Fig. 3: To penalize large deviations from the observed depth images, we penalize the
observed distance to the object surface. This is done for all frames and resolves the
Generalized Bas-Relief ambiguity.

This error term penalizes solutions where the estimated distance is far from the
observed depth image, which constrains the surface to resolve the Generalized Bas-
Relief ambiguity. We illustrate the underlying idea behind this data term in Figure 3.

3.4 Albedo Regularization

It is common to put some form of prior on the albedo, see [22] and [24], and we do the
same to favor solutions where neighboring voxel corners have similar albedo. This helps
to disambiguate between variations in the albedo and the surface geometry. Considered
a voxel V with corners (v1, . . . , v8), we penalize the albedo differences between all its
neighbouring corners. By summing over all voxels, we get:

Ealbedo(ρ) =
∑
V ∈V

∑
vi 6=vj∈V

(ρvi − ρvj )2. (6)

Note that the corners typically occur among several voxels.

4 Optimization

With the three different error terms defined in Equations (4), (5) and (6), we assemble
our final objective functional as follows:

E(d,ρ, s̃1, . . . , s̃K) = ELambert(d,ρ, s̃
1, . . . , s̃K) + λEdepth(d) + µEalbedo(ρ), (7)

where λ and µ are positive weights for the individual cost terms.
To optimize over the variables we perform alternating optimization:

1. Extract voxels V that contain the surface and create the sets V1, . . . ,VK containing
the voxels in V visible in frame k. Then find surface points in each voxel V .

2. Optimize the light sources s̃1, . . . , s̃K :

(s̃1n+1, . . . , s̃
K
n+1) = argmin

s̃1,...,s̃K

K∑
k=1

‖Als̃n s̃
k − bls̃n‖

2. (8)
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3. Optimize the albedo values ρ:

δ∗ρ = argmin
δρ

‖Alρn
δρ − blρn

‖2 + µ‖Aρρn
δρ − bρρn

‖2 + γρ‖δρ‖2 (9)

ρn+1 = ρn + δ∗ρ. (10)

4. Optimize the distance values d:

δ∗d = argmin
δd

‖Aldn
δd − bldn

‖2 + λ‖Addn
δd − bddn

‖2 + γd‖δd‖2 (11)

dn+1 = dn + δ∗d. (12)

5. Update the TSDF with dn+1 and ρn+1.

In Equation (8) we optimize directly over the light sources, given the current estimates
ρn and dn, which is a linear least-squares problem. To optimize over ρn in Equation (9),
we linearize ρ(x,ρV ) for each voxel V and obtain the matrices Alρn

and blρn
. We

also put a damping on the step size of δρ to prevent too rapid changes in the albedo.
Similarly, for Equation (11) we linearize ñ(xV ,dV ) with respect to dV analytically and
put a damping on the step size. This is crucial, since a too big step can alter the surface
severely and ruin the optimization. Furthermore, we are doing local refinements of the
surface, so we have a prior that the step size should be small. In fact, the voxel cube has a
fixed side-length α, so the distance between the surface and a voxel in that cube cannot
be greater than

√
3α. Hence in each iteration we do not want the distance to change

more than a fraction of the cube’s side-length. Note that due to the use of tri-linear
interpolation, all derivatives with respect to dV and ρV can be computed analytically.

Surface Initialization via Depth Fusion. We essentially follow [5, 18, 23] to initialize
the TSDF. Similarly, each voxel corner is assigned an initial albedo estimate ρ derived
from the captured gray-scale images. This is used to estimate the appearance of the
surface. The light sources are initialized randomly.

5 Experimental Results

To evaluate our method we perform a number of experiments. Note that the approaches
[21, 22] do not vary the illumination between images, while other works either fix the
light source or do not vary the camera position. The datasets from [21, 22] with fixed
light sources are consequently not directly applicable for our approach. Instead, we
collect our own data where we record the scene using a depth sensor and illuminate the
object with a detached lamp from different directions. For the recordings, we put the
camera on a tripod, illuminate the object with a lamp and capture one image at a time.

We also recorded some datasets with fixed light in order to enable a comparison
with the approach in [22]. The recordings were taken from approximately the same
distance and view point as our sequences. All the results from the algorithm in [22] in
our paper were produced by the original implementation.

Furthermore, a sequence of a 3D printed object was acquired. The ground truth for
the object is known, hence we can register the obtained reconstructions to the ground
truth model and get a quantitative evaluation as well. All sequences were captured using
an Asus Xtion Pro Live Sensor with a resolution of 640×480 for both color and depth.
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(a) Input (b) Fusion (c) Ours (d) [22]

Fig. 4: (a) Two used input images from the Tower sequence. (b) Two shading images
from the initial reconstruction using only the depth images. (c) Two shading images
from our refined model. (d) Two resulting shadings from [22].

5.1 Qualitative Results

In this section we show results from several experiments on real data and compare our
method with [22]. The first result in Figure 4 is from the Tower sequence where we also
show some of the input images. The models shown in all experiments are visualized by
synthetically rendering the shading image from one of the estimated camera poses with
optimized light source.

There is a clear difference between the shading from just fusing the depth and the
refined shading using our proposed method, with significantly enhanced details. The
presented result of [22] exhibits comparable quality. For this experiment we set λ =
0.001 and µ = 8.5 and we used 15 images in both our sequence and the sequence for
the algorithm in [22].

In the second experiment we scan a statue (Figure 5) and a shirt with a lot of wrin-
kles (Figure 2). The results are displayed in Figure 5 (b)-(d) and Figure 6 (b)-(d). The
rendered shading images exhibit a significant refinement of the surface normals. In Fig-
ure 5, the eyes and mouth of the statue are much more detailed and fine-scaled compared
to the initial solution. The wrinkles in Figure 6 are much sharper and more prominent
in the refined shading image (d) compared to the initial fused shading image (c). In the
top row of Figure 6 the initial albedo (a) can be seen together with the optimized albedo
(b). In the initial solution, most shading effects are present in the albedo estimation, in
contrast to the optimized solution where most details are in the shading image and the
estimated albedo is roughly constant.

The Statue experiment consists of 19 images and we set λ = 0.05 and µ = 12.5,
the Shirt sequence contains 9 images with the same set of parameters.

5.2 3D Renderings

For a qualitative evaluation, we also render the obtained surfaces with Phong-shading
using Menderer [25] in order to visualize the reconstructed 3D model differences be-
tween our proposed method and the algorithm from [22]. The results of the Statue
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(a) Input images (b) Fusion (c) Ours (d) [22]

Fig. 5: (a) Input images from the Statue sequence. Shading of initial TSDF (a) in com-
parison with our method (c) and with [22] (d). The optimized shadings are considerably
improved, which is particularly visible at the eyes, mouth and sharper edges of the shirt.

sequence in Figure 7 suggest that our method better preserves details on the refined 3D
model. Comparing Figures 7a and 7b, it is clear that the details on the shirt are better
preserved in Figure 7a. For a better visualization, close-ups are provided in Figure 7.
We believe that the surface regularization in [22] is a reason to why these details are
smoothed out. Please note that the holes in Figure 7a are rendering artifacts due to
inverted normals.

Implementation details. All code is implemented in Matlab. The generally most run-
time expensive part is the extraction of 3D points. For the Shirt experiment, which is
the most time consuming dataset, our method required about 16 seconds per frame.
Computing the matrices for optimization takes about 6 seconds per image on a desktop
computer with 6 Intel i7-4930K cores and 48 GB of RAM. All experiments typically
converged after about 50 iterations.

5.3 Quantitative Evaluation

In the following, we provide quantitative results on the Tower dataset, where we have
the ground truth 3D model for the 3D printed object. We generated two point clouds,
one from the initial model Pinit and one from the optimized model Popt. Moreover, we
also rendered a point cloud from the ground truth data Pgt. To measure the quantitative
difference between the reconstructions, we selected a part of the ground truth model
with valid existing correspondences on the reconstructed model. Then we registered
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(a) Initial albedo (b) Estimated albedo

(c) Fusion (d) Ours

Fig. 6: Shirt sequence: (a) Input albedo to our framework. (b) Estimated albedo. (c)
Shading from initial solution. (d) Shading from optimized model.

Initial Model Optimized Model
RMSE (m) 0.00128 0.00105

Table 1: RMSE in meters for the initial and the optimized models compared to ground
truth. The RMSE for the optimized model is approximately 18% lower.

Pinit and Pgt, matched each point in Pgt to a point in Pinit and computed the Root
Mean Square Error (RMSE). Similarly, we got the RMSE for Popt.

The results are given in Table 1. The error is about 18% lower for the optimized
model, which is a significant improvement. Hence, we obtain millimeter accuracy in
the reconstruction. To visualize the quantitative difference, Figure 8 provides a contour
plot of the ground truth, the initial and the optimized models. Looking at the optimized
green line and comparing that to the ground truth blue line, it is evident that we manage
to get a more exact estimation of the surface. This demonstrates the advantages of (i)
optimizing over rendered intensity and (ii) observing the surface from different views
to reduce the impact of occlusions.

6 Conclusion and Future Work

In this paper we have successfully combined ideas from photometric stereo and volu-
metric depth fusion in order to refine a 3D model represented as a TSDF. The derived
objective functional favors solutions where the distance values in the TSDF and the
albedo make the rendered images consistent with the observations. By illuminating
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(a) Ours (b) [22] (c) Ours (d) [22]

Fig. 7: Qualitative comparison of our method with [22] on the Statue dataset. The shirt
in the Phong-shaded rendering of our method (a) is sharper and better preserved com-
pared to [22] (b). This is particularly visible in the close-ups shown in (c)-(d).

Fig. 8: Contour of the initial surface (red), the optimized surface (green) and the true
surface (blue) in a slice through the reconstructed Tower. Note that the optimized model
better captures the shape of the true surface.

the object from different directions, it is possible to significantly improve the recov-
ery of fine-scale details in the 3D models. The experimental evaluation demonstrates
both quantitatively and qualitatively that we obtain accurate reconstruction results of
high quality. Potential future work could be how to disambiguate shading from albedo
without the L2–norm.
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