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Motivation: 3D reconstruction
Reconstruction of digital 3D models from real objects

Fuse multiple camera views into global representation
Use of novel RGB-D sensors
Simultaneously estimate camera trajectory and 3D model
→ Simultaneous Localization And Mapping (SLAM)

Application scenarios
Robot navigation, gaming, physics, etc.
Reverse-engineering
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Motivation: 3D workpiece reconstruction

Special case of
reverse-engineering
Practical advantages:

Visual inspection
Exact measurements
Detection of deformations
Construction of customized
tools

Challenges:
Large amount of data
High metric accuracy
Efficient optimization
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Objectives of this thesis
Reconstruction of accurate dense 3D models of
workpieces
Flexible and modular RGB-D-based SLAM system
Global drift and inaccuracies in 3D model
→ Novel bundle adjustment approach:

Minimization of 3D alignment error
Out-of-core bundle adjustment using submaps
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Related work: RGB-D-based 3D reconstruction
KinectFusion [Izadi et al., 2011]

TSDF volume representation
Real-time camera tracking based on ICP
Limited scene size

RGB-D SLAM [Endres et al., 2012]

Flexible processing pipeline
Robust feature-based 3D
alignment
Pose-graph optimization
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Related work: bundle adjustment
Bundle adjustment (BA): Adjust light rays from landmarks
into cameras
Full bundle adjustment [Triggs et al., 2000]

Full graph of camera poses, landmarks and observations
Non-linear Least Squares (NLS) → Levenberg-Marquardt
High computational complexity

Pose-graph optimization [Endres et al., 2012]
Only camera poses and pose-pose-connections
Efficient, but approximation per se

Submap-based approaches [Ni et al., 2007]
Partition BA problem into submaps (optimized independ.)
Merge submaps after global optimization
Approaching accuracy of full BA, but more efficient
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Basic approach

..

..Scene:
workpiece

..RGB-D data
acquisition

..Feature-based
3D alignment

.

. . ..Mapping ..Loop closure
detection

. . ..Bundle
adjustment

.

..Reconstructed
3D model

. ..Dense model
reconstruction

.
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RGB-D data acquisition
RGB-D frame: RGB image + depth map
Hand-held ASUS Xtion Pro Live
Accuracy of depth measurements depend on distance to
surface → between 0.70m and 1.80m
Two loops around workpiece (lower and upper half)
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RGB-D frame preprocessing

Input RGB image Input depth map

Depth map after bilateral filter Depth map after threshold
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Camera tracking
Determine camera pose for every RGB-D frame
Estimate relative camera motion between two frames:
Feature-based 3D alignment

..

..Frame i− 1 ..Feature detection
and extraction

. . ..Optimal
transformation

. . ..Feature
matching

..Robust 3D alignment
using RANSAC

..Frame i ..Feature detection
and extraction

. . ..Outlier-free
3D point corresp.

Compute absolute poses by combining relative poses
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Feature detection
Detect distinctive feature points in RGB images
Extract compact descriptors for the feature points
SIFT, SiftGPU, SURF, ORB
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Feature matching
Match feature descriptors across two images
Matching strategies: Brute-force, FLANN
Result: 512 best 2D correspondences per frame pair
But: many false positives
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Robust 3D alignment using RANSAC
2D correspondences + depth → 3D correspondences
Robust 3D alignment using RANSAC:

Select sample sets → determine largest consensus set
→ Outlier-free 3D correspondences
Optimal transformation
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3D map representation
SLAM graph:

M camera poses Ci ∈ SE(3)
N 3D landmarks Xj ∈ R3

K observations zkij = (ukij , vkij , dkij)⊤ ∈ R3

Absolute estimates from frame-to-frame tracking
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Loop closure detection
Detect when current frame shows same scene as a
previous frame
3D alignment with 20 uniformly sampled previous frames
→ Loop closure detected if alignment successful
→ Integrate redundancy for optimization into 3D map
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Bundle adjustment using 3D alignment error
Reduce global drift in map → bundle adjustment
Full 2D bundle adjustment:

Measurement z̄kij = (ukij , vkij)⊤ ∈ R2

Minimization of 2D reprojection error (w.r.t. Cik and Xjk ):
K∑

k=1

||hk(Cik ,Xjk)− z̄k||2 (1)

Full 3D bundle adjustment: integrate depth constraints
Measurement Zk = ρ(ukij , vkij , dkij) ∈ R3

Minimization of 3D alignment error (w.r.t. Cik and Xjk ):
K∑

k=1

||ĥk(Cik ,Xjk)− Zk||2 (2)

Non-linear least squares optimization: Solution using
sparse Levenberg-Marquardt (Ceres Solver & CXSparse)
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Submap-based bundle adjustment
Disadvantages of full BA:

High computational complexity
Inefficient for increasing amount of data

Solution: out-of-core techniques
Process only portion of a large problem at once
Combine results from subparts

→ Maintain accuracy, improve efficiency
Submap-based BA approach:

1 Partition SLAM graph into several submaps
2 Optimize each submap internally
3 Align submaps globally
4 Optimize each submap internally with fixed separators

Minimizations in all stages use 3D alignment error
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Graph partitioning into submaps
L submaps of size M̃ = M/L (no advanced graph partitioning)
Assign base nodes Bl (l ∈ 1 . . . L) to submaps
Initialize base nodes: Bl = C(l−1)M̃+1

Express submap contents relative to base node:
C̃l
i = T−1(Bl,Ci), X̃l

j = T −1(Bl,Xj), Z̃l
kij = Zkij
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Submap optimization
Optimize submaps independently:

Kl∑
k=1

||ĥk(C̃l
ik , X̃

l
jk)− Z̃l

k||2 (3)

→ C̃l
i and X̃l

j in all submaps optimal relative to Bl

Landmarks connected to another submap:
Separator landmarks: X̄l

j = T (Bl, X̃l
j)

Locations of X̄l
j relative to Bl: inter-measurements Z̄l

k = X̃l
jk
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Global submaps alignment
Optimization graph: base nodes and separator landmarks
as vertices, inter-measurements as edges
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Eliminate global drift by moving the base nodes
Optimization for global alignment (w.r.t. Bl, X̄j):

K̄∑
k=1

||ĥk(Blk , X̄jk)− Z̄l
k||2 (4)
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Internal submap update
Base nodes and separator landmarks globally optimal
Update separator landmarks in submaps: X̃l

k = T −1(Bl, X̄l
k)

Set separator landmarks fixed
Optimize each submap independently (see stage 1)
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Final optimized SLAM graph
Final SLAM graph after submap-based BA:
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Refined absolute camera poses and landmark locations:

Ci = T(Bl, C̃l
i) and Xj = T (Bl, X̃l

j) (5)
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Dense 3D model representation

Frame → 3D point cloud
→ Transformed using Ci

Tree-based volumetric
representation: Octree
Voxels: occupancy, color,
frames visible
Integration using recursive
subdivision

Post-processing: remove voxels seen in < 5 frames
Occupied octree leaves → colored 3D point cloud
Adv.: extensible volume and limited memory consumption
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Quantitative evaluation
TUM RGB-D benchmark [Sturm et al., 2011]: Selected
subset of 10 sequences
Measurement of Absolute Trajectory Error (ATE) between
estimated and ground-truth camera trajectory
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Evaluation: 3D reconstruction system
Feature detectors:

ORB SIFT SiftGPU SURF
ATE [m] 0.158 0.145 0.129 0.162
Runtime [s] 0.0091 0.1012 0.0361 0.1676

ORB: fastest feature detector, but increased drift
SiftGPU: best combination of speed and accuracy

Average runtime of 0.5724 s per frame (∼ 2Hz):
Preprocessing: 0.0237 s
Feature detection: 0.0361 s
Feature matching: 0.3206 s
Pose estimation: 0.1919 s
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Evaluation: bundle adjustment runtime
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Evaluation: bundle adjustment accuracy
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Evaluation: absolute results and comparison
Best tradeoff between efficiency and accuracy:
∼ 10 submaps per 100 frames (i.e. L ∼ 0.10M)

Sequence No BA Full 2D Full 3D Submap-based RGB-D SLAM
ATE ATE ATE time submaps ATE ±(%) time ±(%) ATE

FR1/360 0.108 0.099 0.077 12.66 74 0.079 +3.6 22.62 +78.6 0.079
FR1/desk 0.047 0.021 0.022 28.97 57 0.022 -1.5 21.96 -24.2 0.023
FR1/desk2 0.098 0.044 0.030 27.23 62 0.031 +3.4 21.36 -21.5 0.043
FR1/plant 0.048 0.023 0.042 66.27 112 0.043 +1.7 49.36 -25.5 0.091
FR1/room 0.275 0.228 0.085 125.46 135 0.086 +1.7 77.30 -38.4 0.084
FR1/rpy 0.046 0.058 0.027 67.56 69 0.027 -1.6 23.69 -64.9 0.026
FR1/teddy 0.277 0.060 0.056 67.88 140 0.057 +1.3 68.06 +0.3 0.076
FR1/xyz 0.015 0.013 0.013 96.87 79 0.013 -7.9 39.72 -59.0 0.014
FR2/desk 0.201 0.080 0.079 2355.26 289 0.076 -3.3 372.20 -84.2 -
FR3/office 0.176 0.039 0.036 1290.24 248 0.035 -3.0 242.88 -81.2 -
average 0.129 0.066 0.047 0.047 -0.5 -32.0 0.054

Submap-based BA approaches accuracy of full 3D BA, but
is more efficient
Our method outperforms RGB-D SLAM regarding accuracy
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Soil auger

Dimensions:
0.85m x 1.16m x 2.80m
Map:

2349 camera poses
156974 landmarks
1086734 observations

Submap-based BA with
230 submaps in 195 s
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Lawn tractor

Dimensions:
0.94m x 1.25m x 2.23m
Map:

2167 camera poses
179616 landmarks
1124111 observations

Submap-based BA with 216
submaps in 184 s
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Farm tractor

Dimensions:
0.99m x 1.30m x 3.19m
Map:

2087 camera poses
137657 landmarks
1063204 observations

Submap-based BA with
208 submaps in 178 s
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Conclusion and Future Work
RGB-D-based 3D reconstruction system for 3D workpiece
reconstruction
Out-of-core BA: 3D alignment error + submaps
Quantitative evaluation:

3D reconstruction system: frame rate of 2Hz
Submap-based vs. full BA:

Avg. runtime improvement of 32% (large datasets: 80%)
ATE approaches full BA and outperforms RGB-D SLAM

Workpieces: soil auger, lawn tractor and farm tractor

Future Work:
Improve efficiency (GPU programming, PROSAC
[Chum and Matas, 2005], FABMAP
[Cummins and Newman, 2008])
Mesh-based model representation; probabilistic approach
Submap-based BA: fully hierarchical tree of submaps
[Ni and Dellaert, 2012]
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