

Out-of-Core Bundle Adjustment for 3D Workpiece Reconstruction

Robert Maier

Master's Thesis in Computer Science

In collaboration with Siemens Corporate Research Inc. Princeton, NJ, USA

Advisor: Dr. Jürgen Sturm

September 24, 2013

Outline

- 1 Introduction
- 2 Related Work
- 3 3D Reconstruction System
 - RGB-D data acquisition
 - Feature-based 3D alignment
 - Mapping
 - Out-of-core bundle adjustment
 - Dense 3D model representation
- 4 Evaluation and Experimental Results
 - Performance evaluation
 - 3D workpiece reconstruction
- 5 Conclusion and Future Work

When Computer Vision Group

Outline

1 Introduction

2 Related Work

- 3 3D Reconstruction System
 - RGB-D data acquisition
 - Feature-based 3D alignment
 - Mapping
 - Out-of-core bundle adjustment
 - Dense 3D model representation
- 4 Evaluation and Experimental Results
 - Performance evaluation
 - 3D workpiece reconstruction
- 5 Conclusion and Future Work

Motivation: 3D reconstruction

- Reconstruction of digital 3D models from real objects
 - Fuse multiple camera views into global representation
 - Use of novel RGB-D sensors
 - Simultaneously estimate camera trajectory and 3D model
 - \rightarrow Simultaneous Localization And Mapping (SLAM)
- Application scenarios
 - Robot navigation, gaming, physics, etc.
 - Reverse-engineering

Motivation: 3D workpiece reconstruction

- Special case of reverse-engineering
- Practical advantages:
 - Visual inspection
 - Exact measurements
 - Detection of deformations
 - Construction of customized tools
- Challenges:
 - Large amount of data
 - High metric accuracy
 - Efficient optimization

Objectives of this thesis

- Reconstruction of accurate dense 3D models of workpieces
- Flexible and modular RGB-D-based SLAM system
- Global drift and inaccuracies in 3D model
 - \rightarrow Novel bundle adjustment approach:
 - Minimization of 3D alignment error
 - Out-of-core bundle adjustment using submaps

When Computer Vision Group

Outline

1 Introduction

2 Related Work

- 3 3D Reconstruction System
 - RGB-D data acquisition
 - Feature-based 3D alignment
 - Mapping
 - Out-of-core bundle adjustment
 - Dense 3D model representation
- 4 Evaluation and Experimental Results
 - Performance evaluation
 - 3D workpiece reconstruction
- 5 Conclusion and Future Work

Related work: RGB-D-based 3D reconstruction

KinectFusion [Izadi et al., 2011]

- TSDF volume representation
- Real-time camera tracking based on ICP
- Limited scene size

RGB-D SLAM [Endres et al., 2012]

- Flexible processing pipeline
- Robust feature-based 3D alignment
- Pose-graph optimization

Related work: bundle adjustment

- Bundle adjustment (BA): Adjust light rays from landmarks into cameras
- Full bundle adjustment [Triggs et al., 2000]
 - Full graph of camera poses, landmarks and observations
 - Non-linear Least Squares (NLS) → Levenberg-Marquardt
 - High computational complexity
- Pose-graph optimization [Endres et al., 2012]
 - Only camera poses and pose-pose-connections
 - Efficient, but approximation per se
- Submap-based approaches [Ni et al., 2007]
 - Partition BA problem into submaps (optimized independ.)
 - Merge submaps after global optimization
 - Approaching accuracy of full BA, but more efficient

Outline

- 1 Introduction
- 2 Related Work
- 3 3D Reconstruction System
 - RGB-D data acquisition
 - Feature-based 3D alignment
 - Mapping
 - Out-of-core bundle adjustment
 - Dense 3D model representation
- 4 Evaluation and Experimental Results
 - Performance evaluation
 - 3D workpiece reconstruction
- 5 Conclusion and Future Work

Basic approach

1 mar

RGB-D data acquisition

- RGB-D frame: RGB image + depth map
- Hand-held ASUS Xtion Pro Live
- Accuracy of depth measurements depend on distance to surface \rightarrow between 0.70 m and 1.80 m
- Two loops around workpiece (lower and upper half)

RGB-D frame preprocessing

Input RGB image

Depth map after bilateral filter

Input depth map

Depth map after threshold

Camera tracking

- Determine camera pose for every RGB-D frame
- Estimate relative camera motion between two frames: Feature-based 3D alignment

Compute absolute poses by combining relative poses

Feature detection

- Detect distinctive feature points in RGB images
- Extract compact descriptors for the feature points
 SIFT, SiftGPU, SURF, ORB

Feature matching

- Match feature descriptors across two images
- Matching strategies: Brute-force, FLANN
- Result: 512 best 2D correspondences per frame pair
- But: many false positives

Robust 3D alignment using RANSAC

- **2**D correspondences + depth \rightarrow 3D correspondences
- Robust 3D alignment using RANSAC:
 - Select sample sets \rightarrow determine largest consensus set \rightarrow Outlier-free 3D correspondences
 - Optimal transformation

3D map representation

- SLAM graph:
 - *M* camera poses $C_i \in SE(3)$
 - N 3D landmarks $\mathbf{X}_{i} \in \mathbb{R}^{3}$
 - Kobservations $\mathbf{z}_{k_{ij}} = (u_{k_{ij}}, v_{k_{ij}}, d_{k_{ij}})^{ op} \in \mathbb{R}^3$
 - Absolute estimates from frame-to-frame tracking

Loop closure detection

- Detect when current frame shows same scene as a previous frame
- 3D alignment with 20 uniformly sampled previous frames
 - \rightarrow Loop closure detected if alignment successful
 - \rightarrow Integrate redundancy for optimization into 3D map

Robert Maier: Out-of-Core Bundle Adjustment for 3D Workpiece Reconstruction

Bundle adjustment using 3D alignment error

- Reduce global drift in map \rightarrow bundle adjustment
- Full 2D bundle adjustment:
 - Measurement $\bar{\mathbf{z}}_{\textit{k}_{\textit{ij}}} = (\textit{\textit{u}}_{\textit{k}_{\textit{ij}}},\textit{\textit{v}}_{\textit{k}_{\textit{ij}}})^{ op} \in \mathbb{R}^2$
 - Minimization of 2D reprojection error (w.r.t. C_{ik} and X_{jk}):

$$\sum_{k=1}^{K} ||\boldsymbol{h}_k(\boldsymbol{C}_{i_k}, \mathbf{X}_{j_k}) - \bar{\mathbf{z}}_k||^2$$
(1)

- Full 3D bundle adjustment: integrate depth constraints
 - Measurement $\mathbf{Z}_{k} = \rho(u_{k_{ij}}, v_{k_{ij}}, d_{k_{ij}}) \in \mathbb{R}^{3}$
 - Minimization of 3D alignment error (w.r.t. C_{ik} and X_{jk}):

$$\sum_{k=1}^{K} ||\hat{\boldsymbol{h}}_k(\boldsymbol{C}_{i_k}, \mathbf{X}_{j_k}) - \mathbf{Z}_k||^2$$
(2)

 Non-linear least squares optimization: Solution using sparse Levenberg-Marquardt (Ceres Solver & CXSparse)

Submap-based bundle adjustment

- Disadvantages of full BA:
 - High computational complexity
 - Inefficient for increasing amount of data
- Solution: out-of-core techniques
 - Process only portion of a large problem at once
 - Combine results from subparts
 - \rightarrow Maintain accuracy, improve efficiency
- Submap-based BA approach:
 - Partition SLAM graph into several submaps
 - 2 Optimize each submap internally
 - 3 Align submaps globally
 - 4 Optimize each submap internally with fixed separators
- Minimizations in all stages use 3D alignment error

Graph partitioning into submaps

- L submaps of size $\tilde{M} = M/L$ (no advanced graph partitioning)
- Assign base nodes B_l ($l \in 1 \dots L$) to submaps
- Initialize base nodes: $B_l = C_{(l-1)\tilde{M}+1}$

Express submap contents relative to base node:

$$ilde{m{C}}_{l}^{\prime} = \mathfrak{T}^{-1}(m{B}_{l},m{C}_{i}), \qquad ilde{m{X}}_{j}^{\prime} = \mathcal{T}^{-1}(m{B}_{l},m{X}_{j}), \qquad ilde{m{Z}}_{k_{ij}}^{\prime} = m{Z}_{k_{ij}}$$

Submap optimization

Optimize submaps independently:

$$\sum_{k=1}^{K_l} ||\hat{h}_k(\tilde{C}'_{i_k}, \tilde{\mathbf{X}}'_{j_k}) - \tilde{\mathbf{Z}}'_k||^2$$
(3)

 $o ilde{C}_{i}^{l}$ and $ilde{\mathbf{X}}_{i}^{l}$ in all submaps optimal relative to B_{l}

 Landmarks connected to another submap: Separator landmarks: \$\bar{\mathbf{X}}_{j}^{l} = \$\mathcal{T}(\mathbf{B}_{l}, \bar{\mathbf{X}}_{j}^{l})\$
 Locations of \$\bar{\mathbf{X}}_{i}^{l}\$ relative to \$\mathbf{B}_{l}\$: inter-measurements \$\bar{\mathbf{Z}}_{k}^{l} = \$\bar{\mathbf{X}}_{ik}^{l}\$

Global submaps alignment

 Optimization graph: base nodes and separator landmarks as vertices, inter-measurements as edges

Eliminate global drift by moving the base nodes
 Optimization for global alignment (w.r.t. B_l, X
_i):

$$\sum_{k=1}^{K} ||\hat{h}_{k}(\boldsymbol{B}_{l_{k}}, \bar{\mathbf{X}}_{j_{k}}) - \bar{\mathbf{Z}}_{k}^{l}||^{2}$$
(4)

Internal submap update

- Base nodes and separator landmarks globally optimal
- Update separator landmarks in submaps: $\tilde{\mathbf{X}}_{k}^{l} = \mathcal{T}^{-1}(\boldsymbol{B}_{l}, \bar{\mathbf{X}}_{k}^{l})$
- Set separator landmarks fixed
- Optimize each submap independently (see stage 1)

Final optimized SLAM graph

Final SLAM graph after submap-based BA:

Refined absolute camera poses and landmark locations:

$$C_i = \mathfrak{T}(B_l, \tilde{C}_i^l)$$
 and $X_j = \mathcal{T}(B_l, \tilde{X}_j^l)$ (5)

Dense 3D model representation

- Frame \rightarrow 3D point cloud \rightarrow Transformed using C_i
- Tree-based volumetric representation: Octree
- Voxels: occupancy, color, frames visible
- Integration using recursive subdivision

- Post-processing: remove voxels seen in < 5 frames</p>
- Occupied octree leaves \rightarrow colored 3D point cloud
- Adv.: extensible volume and limited memory consumption

Outline

- 1 Introduction
- 2 Related Work
- 3 3D Reconstruction System
 - RGB-D data acquisition
 - Feature-based 3D alignment
 - Mapping
 - Out-of-core bundle adjustment
 - Dense 3D model representation
- 4 Evaluation and Experimental Results
 - Performance evaluation
 - 3D workpiece reconstruction
- 5 Conclusion and Future Work

Quantitative evaluation

- TUM RGB-D benchmark [Sturm et al., 2011]: Selected subset of 10 sequences
- Measurement of Absolute Trajectory Error (ATE) between estimated and ground-truth camera trajectory

Evaluation: 3D reconstruction system

Feature detectors:

	ORB	SIFT	SiftGPU	SURF
ATE [m]	0.158	0.145	0.129	0.162
Runtime [s]	0.0091	0.1012	0.0361	0.1676

- ORB: fastest feature detector, but increased drift
- SiftGPU: best combination of speed and accuracy
- Average runtime of 0.5724 s per frame (~ 2 Hz):
 - Preprocessing: 0.0237 s
 - Feature detection: 0.0361 s
 - Feature matching: 0.3206 s
 - Pose estimation: 0.1919 s

Evaluation: bundle adjustment runtime

Robert Maier: Out-of-Core Bundle Adjustment for 3D Workpiece Reconstruction

Evaluation: bundle adjustment accuracy

Evaluation: absolute results and comparison

Best tradeoff between efficiency and accuracy: \sim 10 submaps per 100 frames (i.e. $L \sim 0.10 M$)

Sequence	No BA	Full 2D	Fι	ill 3D	Submap-base			ed		RGB-D SLAM
-	ATE	ATE	ATE	time	submaps	ATE	$\pm(\%)$	time	$\pm(\%)$	ATE
FR1/360	0.108	0.099	0.077	12.66	74	0.079	+3.6	22.62	+78.6	0.079
FR1/desk	0.047	0.021	0.022	28.97	57	0.022	-1.5	21.96	-24.2	0.023
FR1/desk2	0.098	0.044	0.030	27.23	62	0.031	+3.4	21.36	-21.5	0.043
FR1/plant	0.048	0.023	0.042	66.27	112	0.043	+1.7	49.36	-25.5	0.091
FR1/room	0.275	0.228	0.085	125.46	135	0.086	+1.7	77.30	-38.4	0.084
FR1/rpy	0.046	0.058	0.027	67.56	69	0.027	-1.6	23.69	-64.9	0.026
FR1/teddy	0.277	0.060	0.056	67.88	140	0.057	+1.3	68.06	+0.3	0.076
FR1/xyz	0.015	0.013	0.013	96.87	79	0.013	-7.9	39.72	-59.0	0.014
FR2/desk	0.201	0.080	0.079	2355.26	289	0.076	-3.3	372.20	-84.2	-
FR3/office	0.176	0.039	0.036	1290.24	248	0.035	-3.0	242.88	-81.2	-
average	0.129	0.066	0.047			0.047	-0.5		-32.0	0.054

- Submap-based BA approaches accuracy of full 3D BA, but is more efficient
- Our method outperforms RGB-D SLAM regarding accuracy

Soil auger

- Dimensions: 0.85 m x 1.16 m x 2.80 m
 Map:
 - 2349 camera poses
 - 156974 landmarks
 - 1086734 observations
- Submap-based BA with 230 submaps in 195 s

Lawn tractor

- Dimensions: 0.94 m x 1.25 m x 2.23 m
- Map:
 - 2167 camera poses
 - 179616 landmarks
 - 1124111 observations
- Submap-based BA with 216 submaps in 184 s

Farm tractor

- Dimensions: 0.99 m x 1.30 m x 3.19 m
- Map:
 - 2087 camera poses
 - 137657 landmarks
 - 1063204 observations
- Submap-based BA with 208 submaps in 178 s

Outline

- 1 Introduction
- 2 Related Work
- 3 3D Reconstruction System
 - RGB-D data acquisition
 - Feature-based 3D alignment
 - Mapping
 - Out-of-core bundle adjustment
 - Dense 3D model representation
- 4 Evaluation and Experimental Results
 - Performance evaluation
 - 3D workpiece reconstruction
- 5 Conclusion and Future Work

Conclusion and Future Work

- RGB-D-based 3D reconstruction system for 3D workpiece reconstruction
- Out-of-core BA: 3D alignment error + submaps
- Quantitative evaluation:
 - 3D reconstruction system: frame rate of 2 Hz
 - Submap-based vs. full BA:
 - Avg. runtime improvement of 32% (large datasets: 80%)
 - ATE approaches full BA and outperforms RGB-D SLAM
- Workpieces: soil auger, lawn tractor and farm tractor
- Future Work:
 - Improve efficiency (GPU programming, PROSAC [Chum and Matas, 2005], FABMAP [Cummins and Newman, 2008])
 - Mesh-based model representation; probabilistic approach
 - Submap-based BA: fully hierarchical tree of submaps [Ni and Dellaert, 2012]

Bibliography I

[Chum and Matas, 2005] Chum, O. and Matas, J. (2005). Matching with PROSAC-progressive sample consensus. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 220–226. IEEE.

[Cummins and Newman, 2008] Cummins, M. and Newman, P. (2008). FAB-MAP: Probabilistic localization and mapping in the space of appearance. The International Journal of Robotics Research, 27(6):647–665.

[Endres et al., 2012] Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., and Burgard, W. (2012). An evaluation of the RGB-D SLAM system. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 1691–1696. IEEE.

[Izadi et al., 2011] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., et al. (2011). KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In *Proceedings of the 24th annual ACM symposium on User interface software and technology*, pages 559–568. ACM.

[Ni and Dellaert, 2012] Ni, K. and Dellaert, F. (2012).

HyperSfM.

In 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012 Second International Conference on, pages 144–151. IEEE.

[Ni et al., 2007] Ni, K., Steedly, D., and Dellaert, F. (2007).
 Tectonic SAM: Exact, out-of-core, submap-based SLAM.
 In Robotics and Automation, 2007 IEEE International Conference on, pages 1678--1685. IEEE.

Bibliography II

[Sturm et al., 2011] Sturm, J., Magnenat, S., Engelhard, N., Pomerleau, F., Colas, F., Burgard, W., Cremers, D., and Siegwart, R. (2011).

Towards a benchmark for RGB-D SLAM evaluation.

In Proc. of the RGB-D Workshop on Advanced Reasoning with Depth Cameras at Robotics: Science and Systems Conf. (RSS), pages 1--3.

[Triggs et al., 2000] Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (2000). Bundle adjustment - a modern synthesis. Vision algorithms: theory and practice, pages 153--177.