
Submap-based Bundle Adjustment for
3D Reconstruction from RGB-D Data

Robert Maier, Jürgen Sturm, Daniel Cremers

TU Munich, Germany
{maierr,sturmju,cremers}@in.tum.de

Abstract. The key contribution of this paper is a novel submapping
technique for RGB-D-based bundle adjustment. Our approach signifi-
cantly speeds up 3D object reconstruction with respect to full bundle
adjustment while generating visually compelling 3D models of high met-
ric accuracy. While submapping has been explored previously for mono
and stereo cameras, we are the first to transfer and adapt this concept to
RGB-D sensors and to provide a detailed analysis of the resulting gain.
In our approach, we partition the input data uniformly into submaps
to optimize them individually by minimizing the 3D alignment error.
Subsequently, we fix the interior variables and optimize only over the
separator variables between the submaps. As we demonstrate in this
paper, our method reduces the runtime of full bundle adjustment by
32% on average while still being able to deal with real-world noise of
cheap commodity sensors. We evaluated our method on a large number
of benchmark datasets, and found that we outperform several state-of-
the-art approaches both in terms of speed and accuracy. Furthermore, we
present highly accurate 3D reconstructions of various objects to demon-
strate the validity of our approach.

1 Introduction

Low-cost sensors such as the Microsoft Kinect have boosted research in 3D recon-
struction and enabled novel applications such as product digitalization, remote
inspection and assessment, documentation and reverse-engineering. For example,
Figure 1 shows a colored 3D model of a lawn-mower generated from hand-held
RGB-D sensor data with the approach proposed in this paper. The resulting
3D model is highly accurate. It preserves small details such as the plate in the
close-up, it allows for metric measurements and can be used to detect dents and
deformations.

In all of these applications, it is important that the 3D model is highly ac-
curate, yet the reconstruction process must be fast enough to be truly useful
in practice. While volumetric methods such as KinectFusion [4, 17] are tailored
for real-time use, they are inherently prone to drift because they do not impose
any long-range consistency. This may lead to inconsistencies such as the for-
mation of double surfaces and blurry textures. Global optimization techniques
such as bundle adjustment [8, 10] achieve higher accuracies. Yet, they drastically
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Fig. 1: We increase the efficiency of 3D bundle adjustment significantly with a
novel submapping approach for RGB-D data.

increase the computation time, scaling poorly with the number of images and
3D points. Submapping techniques offer a remedy to this problem. They divide
the large optimization problem into smaller, independent subproblems through
marginalization [20, 21]. Unfortunately, this strategy only works well when the
graph is sparsely connected. For the reconstruction of an object in the center,
the challenge considered in this work, many overlaps exist and thus the result-
ing graph is densely connected. This renders full bundle adjustment slow and
existing submapping techniques inefficient.

To cope with these challenges, we developed a novel submapping technique
for feature-based 3D reconstruction that significantly speeds up map optimiza-
tion. Moreover, we provide an experimental study on the trade-off between re-
construction accuracy and computation speed on public benchmark sequences.
We finally show several examples of 3D scans demonstrating the accuracy that
can be achieved using our approach. To the best of our knowledge, we are the
first to introduce submapping into an RGB-D based reconstruction method and
to demonstrate its efficiency in the context of 3D object scanning.

2 Related Work

Real-time 3D reconstruction from images has a long history in computer vi-
sion [2, 5, 7, 10, 13, 17]. We focus our review of previous work on approaches us-
ing a single, hand-held sensor. In this scenario, called Visual SLAM, both the
pose of the camera and the 3D model need to be estimated. Typically, visual
features such as SIFT are extracted and matched across the frames. From this,
a SLAM graph can be constructed whose vertices correspond to 6-DOF camera
poses and 3D landmark positions and whose edges correspond to the observa-
tions. Bundle adjustment (BA) [26] optimizes over camera poses and landmarks
using non-linear minimization. While impressive reconstructions can be obtained
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using BA [2], bad initialization and the scale ambiguity can lead to slow conver-
gence, and the computational effort typically grows cubically with the number
of cameras and landmarks. Sparse Bundle Adjustment [16] exploits the fact that
3D landmarks are usually not visible in all of the cameras. When instead stereo
cameras or RGB-D sensors are used, the scale ambiguity can be resolved and
the initialization is simplified [10, 11]. Moreover, the absolute camera motion
between two frames can be estimated directly. By marginalization over all land-
marks, the problem can then be reduced to pose graph SLAM [8, 10, 14], which
is however still cubic in the number of cameras.

Submap-based BA methods [12, 15, 20, 21] aim at partitioning the full BA
problem into several smaller submaps, which are connected among each other
and optimized independently in an efficient manner. By expressing the camera
poses and landmarks relative to a base node for every submap [23], the error per
submap is bounded which generally improves convergence. Advanced techniques
for graph partitioning such as nested dissection have been proposed [19]. After
the individual submaps have been optimized independently, a global optimiza-
tion over the submap separator variables is carried out and the whole process is
iterated. In this work, we employ submapping to pair the high accuracy of full
BA with the improved efficiency.

After map optimization, a 3D model can be generated from the data. Com-
mon representations for 3D models include point clouds, surfels [10], triangle
meshes [27], and signed distance functions [6]. Octrees allow for efficient data
storage and fusion at multiple scales [9, 24, 28]. While KinectFusion [17] demon-
strated that impressive 3D models can be acquired by tracking and fusing the
depth images directly into a signed distance volume, drift will accumulate in the
3D model and inevitably lead to inconsistencies. Several approaches have been
proposed to mitigate these effects in post-processing [27, 29, 30], however at the
cost of having different cost functions at different optimization stages, which is
not desirable from a theoretical point of view. Therefore, we propose to use BA
with a single cost function to achieve global consistency.

3 3D Object Reconstruction Pipeline

We developed a feature-based 3D reconstruction system similar to [11]. Figure 2
depicts a schematic overview.

We acquire RGB-D data of the object with an off-the-shelf ASUS Xtion Pro
Live sensor. To account for increasing sensor noise with distance, we pre-process
the acquired depth map with a bilateral filter and cut off large depth values.

Our approach uses frame-to-frame camera tracking to estimate the absolute
camera poses for the acquired RGB-D frames by concatenating the relative cam-
era motion. We estimate the relative pose of every frame w.r.t. its predecessor
using a robust feature-based 3D alignment algorithm based on the method of
Arun [3] and RANSAC.

We use a graph-based map representation. The nodes of the graph corre-
spond to the variables, i.e. camera poses Ci ∈ SE(3) (with i ∈ 1 . . .M) and
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Fig. 2: Processing pipeline of our 3D object reconstruction approach.

3D landmarks Xj ∈ R3 (with j ∈ 1 . . . N). The edges of the graph represent
landmark observations k ∈ 1 . . .K, i.e. zk = (uk, vk, dk)> ∈ R3, where (uk, vk)
is the observed 2D pixel coordinate and dk is the observed depth.

To further reduce the drift in the graph, we detect loop closures by performing
a 3D alignment of the current frame with 20 uniformly sampled previous frames.
After all frames have been processed, we perform bundle adjustment to optimize
over the camera poses and landmark positions. More details on this will be
provided in Section 4 and 5.

After optimization, we use the refined camera poses to generate a dense
colored 3D point cloud by fusing the RGB-D frames into an octree-based 3D
model representation.

4 Full Bundle Adjustment for RGB-D Sensors

Our approach on 3D bundle adjustment is inspired by the work of Henry et
al. [10], that we extended by integrating depth measurements from the RGB-D
sensor as additional constraints similar to Scherer et al. [22]. The optimization
goal becomes then to minimize the 3D alignment error instead of the 2D repro-
jection error.

Rigid body motion The camera parameters Ci to be optimized are 3D Eu-
clidean transformations g = (R, t) ∈ SE(3), with translation vector t ∈ R3 and
rotation R ∈ SO(3). To have a minimum number of parameters to be optimized,
we represent the camera poses Ci with their twist coordinate representations
ξi = (ω1, ω2, ω3, v1, v2, v3)> ∈ R6. While this representation is important for
the efficiency of solving the NLS problem, we use in the following the notation
Ci ∈ SE(3) to denote the camera poses.

We define the transformations T (g,X) and T(g, g̃) for transforming 3D points
X ∈ R3 and transformations g̃ ∈ SE(3), respectively.

Camera model We use the basic pinhole camera model to describe the mapping
of 3D points of a three-dimensional scene onto a 2D image plane. The projection
function π maps a 3D point X = (x, y, z)> ∈ R3 to a 2D image point x ∈ R2.
If a depth value d for a 2D image point x = (u, v)> ∈ R2 is given, the back-
projection of x to a 3D point X ∈ R3 in the camera coordinate frame is given
by:

X = ρ(u, v, d) =
(

(u−cx)d
fx

,
(v−cy)d

fy
, d
)>

, (1)

with focal lengths fx, fy and coordinates of the camera center cx, cy.
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2D reprojection error Regular bundle adjustment refines both camera poses
and 3D structure of the scene by minimizing the 2D reprojection error. This
error is the difference between the actual 2D measurement z̄k = (uk, vk)> ∈ R2

of a 3D landmark in an image and its predicted 2D projection based on the
current estimates of the respective camera pose and landmark. The error function
minimized in (2D) bundle adjustment is usually defined as

K∑
k=1

||hk(Cik ,Xjk)− z̄k||2, with hk(Cik ,Xjk) = π(T −1(Cik ,Xjk)). (2)

where Cik and Xjk are the variables to be optimized. We use the subscript k
here to indicate that Cik and Xjk are related by measurement k.

3D alignment error To utilize the depth data provided by the RGB-D camera,
we integrate depth measurements as additional constraints into bundle adjust-
ment to improve accuracy, robustness and convergence behavior. We compute
the 3D position of a landmark from its measurement zk = (uk, vk, dk)> as

Zk = ρ(uk, vk, dk) ∈ R3. (3)

This allows us to directly minimize the 3D alignment error, which is defined
as the difference between the measured and the predicted 3D position of a 3D
landmark in the local camera coordinate frame. The prediction is accomplished
by transforming the landmark Xjk in global coordinates back into the local
camera coordinate frame using the respective absolute camera pose Cik . With
this, we define the error function as

K∑
k=1

||ĥk(Cik ,Xjk)− Zk||2, with ĥk(Cik ,Xjk) = T −1(Cik ,Xjk). (4)

The solution to this kind of NLS optimization problem is well-investigated and
can be computed by applying a sparse LM algorithm. In our implementation,
we employ the Ceres Solver [1] and CXSparse for solving bundle adjustment
problems with the above cost functions.

5 Efficient Bundle Adjustment for RGB-D Sensors using
Submapping

With the large amount of data that arises from commodity RGB-D sensors,
full bundle adjustment with its high computational complexity quickly becomes
intractable due to the large time and memory consumption. In order to make the
optimization more efficient, we propose a novel submapping technique tailored
to RGB-D sensors, consisting of the following four processing stages:

1. Partition the RGB-D bundle adjustment graph into submaps.



6 R. Maier, J. Sturm, D. Cremers

2. Optimize each submap individually.

3. Align the submaps globally.

4. Optimize each submap internally with fixed separator variables.

Note that in contrast to previous work, our approach applies submapping to the
3D (RGB-D) bundle adjustment problem (instead of 2D). In this way, we can
achieve high reconstruction accuracies while keeping the computational com-
plexity small. In the following, we present each step in more detail.

Graph partitioning into submaps To facilitate a submap-based optimiza-
tion approach, the full optimization graph is first partitioned into L submaps.
While challenging unordered image sets require advanced graph partitioning
techniques [18], we apply a uniform partitioning scheme to achieve spatially co-
herent partitions, i.e. frames in the same partition have many common features.
We split the input trajectory into segments of equal size M̃ = M/L. To every
submap, we assign a base node Bl ∈ SE(3) with l ∈ 1 . . . L and initialize it to
the first contained camera pose such that Bl = C((l−1)M̃+1). When the submaps
are populated, all camera poses and landmarks are parametrized relative to the
base node of the respective submap:

C̃l
i = T−1(Bl, Ci), X̃l

j = T −1(Bl,Xj) (5)

We can directly use the measurements as submap measurements Z̃l
k = Zk.

Submap optimization We optimize the submaps independently in the sec-
ond stage to achieve local consistency. The bundle adjustment problem in each
submap consists of its camera poses C̃l, landmarks X̃l and measurements Z̃l.
Hence, we have to solve L small optimization problems instead of one large
problem. We perform the optimization of submap l by minimizing the 3D align-
ment error as defined in equation 4 using bundle adjustment:

Kl∑
k=1

||ĥk(C̃l
ik
, X̃l

jk
)− Z̃l

k||2, (6)

where Kl is the number of measurements in submap l. After the variables C̃l
i and

X̃l
j in all submaps have converged, we obtain an optimized local reconstruction

for each submap relative to its base node Bl as depicted in Figure 3a.

Global submaps alignment If a landmark of a submap is seen by a camera
pose contained in another submap, it is considered a separator landmark and
expressed in global world coordinates:

X̄l
j = T (Bl, X̃

l
j). (7)

Further, we introduce inter-measurements Z̄l
k = X̃l

jk
between the submaps,

which are the locations of X̄l
j relative to Bl. We make this approximation since
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Fig. 3: Example of a SLAM graph consisting of 6 camera poses, 6 landmarks and
20 observations. (a) The map partitioned into two submaps. All camera poses
and landmarks are expressed relative to their assigned base node, B1 and B2,
respectively. (b) The global submaps alignment consists only of the base nodes
and separator landmarks. The locations of the separator landmarks relative to
their connected submaps’ base nodes are used as measurements.

we assume the relative locations of the submap landmarks to be optimal relative
to the base nodes due to the performed local optimization.

After the internal submap alignment, we eliminate the global drift by moving
the base nodes. Here, the local coordinate systems in the submaps play an im-
portant role, as the landmarks move with their base node and hence keep their
locally optimal values from the previous stage. In the global alignment stage, we
perform a full optimization of a graph consisting only of the base nodes and the
separator landmarks as vertices, connected by the inter-measurements as edges
as illustrated in Figure 3b. We omit the internal landmarks and camera poses,
as they have already been used to determine the optimal relative locations of
the separator landmarks in each submap. In particular, we minimize

K̄∑
k=1

||ĥk(Blk , X̄jk)− Z̄l
k||2, (8)

over Bl and X̄j , where K̄ is the number of inter-measurements of all submaps.
With the optimization graph consisting only of base nodes and a limited

number of separator landmarks, the global optimization itself can be computed
very efficiently. After this separator optimization, we obtain the refined poses
of the base nodes and locations of the separator landmarks with respect to the
global world coordinate system. The effect of moving the base node results in a
reduced global drift between the submaps and a globally consistent 3D model.

Internal submap update After the global alignment stage, the locations of the
separator landmarks may have changed relative to the base nodes. Therefore, we
optimize in the fourth stage the internal landmarks given the refined separator
landmarks. To this end, we first update the relative locations of the changed
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separator landmarks in each submap with the changed global locations:

X̃l
k = T −1(Bl, X̄

l
k). (9)

Subsequently, we perform bundle adjustment with the same input as in stage
1, by minimizing the error function defined in equation 6 while keeping the
separator landmarks fixed. This is illustrated again in Figure 3a, where the bold
nodes X̃1

3, X̃
1
4, X̃

2
3, X̃

2
4 are the separator landmarks. This optimization step allows

the internal camera poses and landmarks to optimally fit to the separator while
the separator landmarks stay in the same position. This usually also results in
quick convergence and small movements of the internal poses and landmarks,
since they were already optimized w.r.t. the base node’s coordinate system.

In theory, it is reasonable to iterate over the third and the fourth step of
the algorithm until convergence. In practice, we found that the results did not
change significantly compared to only a single iteration.

To finally get the refined absolute camera poses and 3D landmark locations,
we transform the content of each submap back into the global coordinate frame:

Ci = T(Bl, C̃
l
i) and Xj = T (Bl, X̃

l
j) (10)

Finally, we use the computed camera poses Ci to fuse the RGB-D frames into
the 3D octree model as explained in Section 3.

6 Evaluation and Experimental Results

The following experimental results demonstrate that (1) 3D bundle adjustment
leads to a significant improvement in accuracy over 2D bundle adjustment, pose
graph optimization and other techniques, (2) submapping strongly reduces the
runtime while yielding a comparable accuracy, and (3) accurate 3D models can
be acquired of various real agricultural vehicles.

We evaluated our approach on the TUM RGB-D benchmark [25] to allow for a
quantitative comparison of its performance with other state-of-the-art methods.

Size of submaps First, we evaluated the performance of our algorithm over
different submap sizes to find the right trade-off between speed versus accuracy.
For this, we computed the Absolute Trajectory Error (ATE) between the esti-
mated and the ground-truth camera trajectory as defined in [25]. We evaluated
the ATE over 10 sequences from the TUM RGB-D benchmark and computed
its mean and standard deviation.

Figure 4 gives the result. We found that for small submap sizes, the ATE was
significantly lower than the ATE of full 3D bundle adjustment. Because bundle
adjustment is intrinsically prone to local minima, full (2D and 3D) bundle ad-
justment sometimes cannot converge from bad initial estimates. As the internal
submap optimization in stage 2 already establishes local consistency before the
global alignment, submapping can lead to better convergence and helps to find
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Fig. 4: Performance evaluation of submapping on 10 sequences. (a) Smaller
submaps lead to more accurate reconstructions, while (b) larger submaps are
more efficient. The black line indicates the average performance of full bundle
adjustment (no submapping), while the blue line shows the average performance
of our approach w.r.t. to the submap size. The shaded area corresponds to the
standard deviation over all benchmark sequences.

a better solution, in particular for small submap sizes. In contrast, large submap
sizes increase the efficiency but decrease accuracy.

As a good compromise between speed and accuracy, we found a submap size
of 10 frames to be a reasonable choice that we used in all subsequent experiments.
This choice is also indicated by the dashed vertical line in the plot. In values, this
submap size leads both to a lower error (-0.5%) and faster computation (-30%).

Benchmark Sequences To study in more detail the effect of our cost function,
we evaluated the performance of full bundle adjustment using the 2D reprojec-
tion error as well as using the 3D alignment error over 10 sequences of the TUM
RGB-D benchmark and compared it to our approach. Furthermore, we also
compared the performance to the RGB-D SLAM system [8] and a KinectFusion-
based implementation [4] using the values reported in the respective publications.

On average, 2D bundle adjustment yields an ATE of 0.066m, while 3D bun-
dle adjustment reduces this error to 0.047m (-29%). At the chosen setting of 10
frames per submap, our approach achieves a similar accuracy at a significantly
reduced computational cost (-32%). Furthermore, the efficiency of bundle ad-
justment can be improved most for long sequences, with an improvement of up
to 84% of the runtime of full bundle adjustment.

In direct comparison to existing approaches, 3D bundle adjustment outper-
forms the pose graph RGB-D SLAM method by 13% (0.047m vs. 0.054m) and
direct SDF tracking by 17% (0.047m vs. 0.058m). We believe that the higher
accuracy of 3D BA in comparison to the RGB-D SLAM system stems from
the fact that RGB-D SLAM performs a simplified pose-graph optimization.
KinectFusion-based methods iteratively integrate the new depth image into the
signed distance function and therefore inevitably accumulate drift.
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Examples of Submap-Based 3D Reconstructions After we have demon-
strated the validity of our framework, we use it to generate 3D reconstructions
of three different agricultural machines. The acquired datasets show a soil auger
of dimensions 1×1×3m, a lawn mower of size 1×1×2m and an older model
of a Renault farm tractor with dimensions 1×1×3m. The reconstructed 3D
models are illustrated in Figures 1 and 5, together with subsets of the acquired
RGB images. The generated reconstructions have a compelling visual quality
and metric accuracy, which is supported by the fact that no drift is visible in the
models. This makes the reconstructions suitable for visual inspection, measuring
tasks and reverse-engineering.

Fig. 5: Left: 3D reconstruction of a soil auger, reconstructed from 2349 RGB-D
frames. Right: 3D model of a tractor, reconstructed from 2087 RGB-D frames.

7 Conclusion and Future Work

We presented a novel method for 3D object reconstruction from RGB-D data
that applies submapping to 3D bundle adjustment. In contrast to prior work, we
thereby fully exploit the available depth information during optimization while
maintaining efficiency. In an extensive quantitative evaluation on publicly avail-
able datasets, we demonstrated that our approach reduces the average runtime
by 32% compared to full bundle adjustment while achieving a similar accuracy.
Furthermore, our approach outperforms several state-of-the-art approaches on
benchmark datasets with respect to speed and accuracy. The 3D models of var-
ious objects reconstructed with our algorithm exhibit a compelling visual qual-
ity and metric accuracy, making it suitable for production quality control and
reverse-engineering.
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A. Experimental Results

Section 6 of the paper evaluates the performance of submap-based bundle adjust-
ment w.r.t. accuracy (measured using the Absolute Trajectory Error (ATE)) and
efficiency. We evaluated our method in comparison with full bundle adjustment
using the 2D reprojection error as well as using the 3D alignment error. More-
over, we compared our approach with other state-of-the-art methods, namely
the RGB-D SLAM system [3] and two KinectFusion-based implementations [1,
2] using the values reported in the respective publications. Table 1 shows the
detailed results for 10 sequences of the TUM RGB-D benchmark [4] at a chosen
setting of 10 frames per submap. All experiments were performed on a desktop
PC with Intel Core i7-3770 CPU with 3.40GHz and 8GB RAM.

Sequence No BA Full 2D Full 3D Submap-based 3D BA RGB-D SLAM KinFu Direct
ATE ATE ATE time submaps ATE ±(%) time ±(%) ATE [3] ATE [1] ATE [2]

FR1/360 0.108 0.099 0.077 12.66 74 0.079 +3.6 22.62 +78.6 0.079 0.591 0.119
FR1/desk 0.047 0.021 0.022 28.97 57 0.022 -1.5 21.96 -24.2 0.023 0.068 0.035
FR1/desk2 0.098 0.044 0.030 27.23 62 0.031 +3.4 21.36 -21.5 0.043 0.635 0.062
FR1/plant 0.048 0.023 0.042 66.27 112 0.043 +1.7 49.36 -25.5 0.091 0.281 0.043
FR1/room 0.275 0.228 0.085 125.46 135 0.086 +1.7 77.30 -38.4 0.084 0.304 0.078
FR1/rpy 0.046 0.058 0.027 67.56 69 0.027 -1.6 23.69 -64.9 0.026 0.081 0.042
FR1/teddy 0.277 0.060 0.056 67.88 140 0.057 +1.3 68.06 +0.3 0.076 0.337 0.080
FR1/xyz 0.015 0.013 0.013 96.87 79 0.013 -7.9 39.72 -59.0 0.014 0.025 0.023
FR2/desk 0.201 0.080 0.079 2355.26 289 0.076 -3.3 372.20 -84.2 - - -
FR3/office 0.176 0.039 0.036 1290.24 248 0.035 -3.0 242.88 -81.2 - 0.061 0.040

average 0.129 0.066 0.047 0.047 -0.5 -32.0 0.054 0.264 0.058

Table 1. Performance evaluation of benchmark sequences.
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