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Abstract

Neural reconstruction and rendering strategies have demon-
strated state-of-the-art performances due, in part, to their abil-
ity to preserve high level shape details. Existing approaches,
however, either represent objects as implicit surface functions
or neural volumes and still struggle to recover shapes with
heterogeneous materials, in particular human skin, hair or
clothes. To this aim, we present a new hybrid implicit surface
representation to model human shapes. This representation
is composed of two surface layers that represent opaque and
translucent regions on the clothed human body. We segment
different regions automatically using visual cues and learn
to reconstruct two signed distance functions (SDFs). We per-
form surface-based rendering on opaque regions (e.g., body,
face, clothes) to preserve high-fidelity surface normals and vol-
ume rendering on translucent regions (e.g., hair). Experiments
demonstrate that our approach obtains state-of-the-art results
on 3D human reconstructions, and also shows competitive
performances on other objects.

Introduction
Realistic and accurate reconstruction of geometry and appear-
ance of digital humans has received significant attention over
the past few years with applications ranging from creating
vivid characters to virtual assistants in customer service, and
social telepresence (Lombardi et al. 2018).

Exist techniques recover the geometry and appearance of
humans from images (e.g., using multi-view stereo, shape-
from-X). Following the introduction of NeRF (Mildenhall
et al. 2020), which employs a neural network to capture color
and opacity in a 3D volume, methods using neural radiance
fields have gained significant popularity over the past few
years. The NeRF network learns to estimate the radiance
optimally from any viewpoint, resulting in images with pho-
torealism. However, NeRF and the related works struggle to
accurately capture fine-level surface details and may generate
erroneous discrete floating volumes. Signed distance fields
(SDF) (Park et al. 2019a), that model the closest distances
to surfaces, have been proposed as an alternative to opac-
ity in implicit shape representations. Their advanced ability
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to help recover better geometries has been demonstrated in
e.g., (Yariv et al. 2020, 2021; Oechsle, Peng, and Geiger
2021).

Our experiments show that concurrent SDF-based repre-
sentations lack the ability to model fine structures and high-
frequency regions of humans (e.g., hair and complex cloth
patterns). While NeRF-like representations are too sensitive
to noise and misalignment, and tend to generate large amount
of floating volumes on the final reconstruction. Such dif-
ferences potentially stem from, first, the nature of implicit
representation with distance fields which provides a smooth
transition from positive to negative values across the surface
boundary. SDFs are thus less likely to produce floating vol-
umes, which requires change of the surface direction in high
frequency. Second, the Eikonal loss ∥∇Φ(x)∥ − 1, which
further enforces the smoothness of object boundaries, and
reduces therefore the sharpness and floating volumes.

Previous works (Oechsle, Peng, and Geiger 2021; Yariv
et al. 2021; Wang et al. 2021) attempt to combine SDF and
NeRF by replacing density fields with SDFs and employing
SDF-to-density functions, while performing volume render-
ing by sampling the entire space. These approaches offer
advantages such as enforcing surface smoothness through
geometry regularization and enabling training without a seg-
mentation mask. However, we observe that such models lose
the crucial capability of NeRF models to capture intricate
geometries, like hair strands, and struggle to converge under
challenging scenarios. In this paper, we propose a comple-
mentary approach that retains the strengths of both SDF and
NeRF models by carefully controlling the model’s behav-
ior according to different body parts, allowing for improved
performances and the ability to capture detailed geometries.

In this paper, we propose a new neural rendering frame-
work for multi-view reconstruction of real humans. We use
the signed distance field (SDF) to model shape surfaces and
introduce a novel volume rendering scheme to learn a two-
layer implicit surface-based representation. Specifically, by
introducing a density distribution induced by the SDF, we can
perform volume rendering to learn an implicit SDF represen-
tation and thus obtain both an accurate surface representation,
benefiting from the neural SDF model, and a robust network
training in the presence of abrupt depth changes, as enabled
by the volume rendering. We performed in-depth quantitative
evaluations of our Hybrid Implicit Surface Representation
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Figure 1: Overview of HISR, which takes viewing rays as input and simultaneously conducts surface and volume rendering. The
process is automatically controlled by two SDFs. Once each rendering is done, we blend the colors for the final output. Due to
privacy reason, we mask out part of the face.

(HISR) on stage-captured real people and photo-realistic vir-
tual humans, as well as objects from the DTU dataset (Aanæs
et al. 2016). We demonstrate that our method is capable of
reconstructing photo-realistic 3D clothed humans and clearly
outperforms several state-of-the-art approaches quantitatively
and qualitatively. Our contributions include:

• A study of state-of-the-art 3D reconstruction approaches
for 3D humans, which shows existing approaches can-
not obtain both smooth surface reconstruction and high-
fidelity geometry details simultaneously.

• A new hybrid representation, which is surface-based while
enabling volume rendering for fine-grained geometry.

• A computed expectation of SDF values within a conical
frustum when computing the volume densities by con-
sidering the viewing rays as cones, which significantly
improves the reconstructed geometry.

• A new loss to regularize the specularity changes upon
viewing directions.

Related Work
Neural Implicit Representations based on ray tracing vol-
ume densities (Kajiya and Herzen 1984) formulate the vol-
ume rendering process as the solution for the scatter equa-
tion under the low albedo assumption. Different from early
approaches on volume rendering, which represent objects us-
ing explicit primitives (Westover 1990; Zwicker et al. 2001;
Wang et al. 2022a), NeRF (Mildenhall et al. 2020) represents
objects via implicit functions of volume densities, which has
shown high-quality results in the novel view synthesis task.
Follow-up works (Barron et al. 2021, 2022) further improve
the novel view synthesis ability of NeRF with more fine-
grained details. Recent works explore broader applications of
NeRF (Chen et al. 2022; Xu et al. 2022; Wang et al. 2022b;
Gao, Cao, and Shan 2023; Cai et al. 2023; Wang et al. 2023b).
However, the reconstructed geometry of NeRF results in ar-
tifacts since the geometry representation lacks surface con-
straints. Orthogonal to the above studies, works focus on ap-
plying implicit representations to human sequences (Muller
et al. 2022; Wang et al. 2022c; Işık et al. 2023).

Neural 3D Human Reconstruction has shown great
potential in many digital human and AR/VR applica-
tions (Mescheder et al. 2019; Park et al. 2019b; Chen and
Zhang 2019; Huang et al. 2020). Different from regular
objects (Wang, Kortylewski, and Yuille 2021; Wang et al.
2023a), the geometries of human are articulate with large
variant appearance on different regions. One of the first ap-
proaches to adopt the implicit function representation for 3D
human reconstruction from a single image is PIFu (Saito et al.
2019, 2020). PIFu leverages pixel-aligned image features
rather than global features. Local details present in the input
image are preserved as the occupancy of any 3D point is
predicted. Alldieck et al (Alldieck, Zanfir, and Sminchisescu
2022) improved upon PIFu by introducing a network that
estimates 3D geometry, surface albedo and shading from a
single image in a joint manner. In contrast, inspired by the
literature of image-based super-resolution, SuRS (Pesavento
et al. 2022) demonstrates that fine-scale detail can be recov-
ered even from low-resolution input images using a multi-
resolution learning framework. While other approaches using
NeRF-type approach for reconstruct 3D human in motion
(Pumarola et al. 2021; Gafni et al. 2021; Peng et al. 2021;
Noguchi et al. 2021; Jiang et al. 2022; Weng et al. 2022).

Geometry Representation of Signed Distance Function
allows for modeling objects by an implicit surface (Park et al.
2019a). IDR (Yariv et al. 2020) proposed to use a single im-
plicit hard surface as object representation and achieved high-
quality geometry reconstructions. Follow-up works (Yariv
et al. 2021; Wang et al. 2021; Yariv et al. 2023) learn and
render SDF functions in a volume rendering manner, which
demonstrate comparable better reconstruction for the smooth
surface without mask supervision. However, compared to
general objects for which getting very accurate segmenta-
tion or matting masks might be challenging, getting high-
quality human masks is a well-researched topic. Powerful
pre-trained segmentation models for clothed humans allow us
to obtain the mask at almost no cost. On the other hand, such
approaches lose the ability to model geometries with fine-
level details, while in this work, we follow the SDF-based
approach for geometry reconstruction but with the capacity
for modeling detailed geometries.
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Figure 2: (a) Illustration of cone cast for volume rendering. We assume a uniform SDF inside the conical frustum and compute a
close-form solution for the expectation of the SDF values. (b) Examples of volume densities computed from SDF values on hair
regions. The ray is sampled at the center of the red circle. We conduct volume rendering from t = t̂s to t = ẗs.

Method
Our approach builds on two key components: i) signed dis-
tance functions (SDF) (Park et al. 2019a) for representing the
instance’s geometry, and ii) an implicit neural renderer capa-
ble of modeling textures and illumination. To elucidate our
method, we first introduce the two primary rendering mech-
anisms used for implicit representations: surface-based and
volume-based. And to better integrate the surface and volume
rendering approaches, we introduce a novel technique called
integrated SDF for volume densities. This approach enables
the seamless fusion and synchronization of updated SDF and
volume densities within our approach, enhancing the overall
quality and accuracy of the reconstructed human model.

Hybrid Implicit Surface Representation
Surface Rendering. The 3D object is represented as a set of
points on surface, which is described as the zero level set of
the SDF Φ represented by a neural network (MLP),

S =
{
x ∈ R3 | Φ(x) = 0

}
. (1)

During the rendering process, we compute a ray r(t) =
o + t · d for a given image pixel, where o represents the
camera location, d is the viewing direction and t is the depth
along the viewing ray. To determine the intersection of the
ray r(t) with the surface S , we use surface tracing to search
along the ray for the first zero point, denoted by t̂, where
Φ(r(t̂)) = 0. The final color observation is computed at the
intersection point as:

C = M(x̂, n̂,d, f), (2)

where x̂ = r(t̂) is the point location, n̂ is the surface normal
at x̂, M denotes the implicit neural renderer implemented
with a MLP, and f is a feature vector describing the geometry
that is obtained from the SDF network.
Volume Rendering. The 3D object is represented as semi-
transparent volumes with volume density σ(x) at each loca-
tion in the scene x ∈ R3. During the rendering process, for
each viewing ray r(t) = o+ t ·d, a set of points r(tk) is sam-
pled and stored, along with the computed color ck and density
σk. The final color observation is obtained by discretizing the

sum, approximating the integral within the volume rendering
function (Kajiya and Herzen 1984; Mildenhall et al. 2020):

C =
∑
k

Tk (1− exp (−σk (tk+1 − tk))) ck,

with Tk = exp

(
−
∑
k′<k

σk′ (tk′+1 − tk′)

)
,

(3)

where Tk is the transmittance function which encodes the
visibility at each sampled point. In order to conduct volume
rendering using an SDF as the geometry representation, a
signed distance to volume density function Φ is introduced:

σ(x) = Ψ(−Φ(x)), (4)

where Ψ is the derivative of the Cumulative Distribution Func-
tion (CDF) of Laplace (Yariv et al. 2021) or Gaussian (Wang
et al. 2021) distribution.
Hybrid Implicit Surface Representation. In our proposed
approach HISR, the geometry is represented as a set of sur-
faces with volumes filled in between specific surfaces. We
assume that the space inside the hard surface Ph is filled with
opaque materials, while the outside volumes are translucent
with volume densities σ(x). Specifically, the boundary of
the translucent region is determined by the hard surface, as
the inner boundary, and another surface as the outer bound-
ary namely the soft surface Ps. Whereas the space outside
the soft surface is vacant. The inner and outer surfaces are
represented by two SDFs, namely hard SDF and soft SDF.
The hard sh and soft SDF values ss at each location x in the
space x ∈ R3 are:

sh = Φh(x), ss = Φs(x), (5)

where Φh and Φs are two outputs generated by a shared
MLP. In HISR, similar to other SDF-based volume rendering
approaches, the volume density is represented by the SDF-to-
density function σ(x) = Ψ(Φ(x)).
Hybrid Rendering. Figure 1 illustrates the rendering process
of HISR. Given a viewing ray r(t) = o+ t · d, we perform
surface tracing to find the intersection point on the ray with
Ph and Ps. This process involves searching for the zero level
along r(t) to obtain t̂s and t̂h such that Φs(r(t̂s)) = 0 and
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Figure 3: HISR conducts volume rendering in translucent
regions and surface rendering on hard surface. The numbers
refer to the rendering cases presented in the table below.

Φh(r(t̂h)) = 0. Consequently, we can deduce that the ray
passes through a vacancy from the camera location at t = 0
to t = t̂s, which contributes nothing to the final viewing color.
From t = t̂s to t = t̂h, the ray traverses translucent regions,
and the final viewing color Cs is computed using Eq. 3 (the
color network is shared with the outer surface rendering).
At t = t̂h, the ray intersects with Ph, and the color Ch can
be computed using Eq. 2. Beyond t = t̂h, the ray becomes
entirely invisible as the transmittance T (r(t)) reduces to 0.
The final viewing color is calculated as C = Cs+T (t̂h) ·Ch.

Indeed, the viewing ray r(t) may only intersect one of the
surfaces or even none of them. In the case where r(t) inter-
sects Ps but not Ph, we search for a secondary intersection
of r(t) with Ps such that Φs(r(ẗs)) = 0, where ẗs > t̂s.
This allows the ray to pass inside the volume from t = t̂s to
t = ẗs before encountering a vacancy. Figure 3 illustrates all
possible cases, which summarize as follows:

r(t) ∩ Ps r(t) ∩ Ph start end final color
= ∅ = ∅ — — Cbg

= ∅ ̸= ∅ — — Ch

̸= ∅ = ∅ t = t̂s t = ẗs Cs + T (ẗh) ·Cbg

̸= ∅ ̸= ∅ t = t̂s t = t̂h Cs + T (ẗh) ·Ch

Table 1: Possible cases in ray tracing.

Additionally, we observed that sampling the same number
of points on rays belonging to cases 3 and 4 is inefficient.
This is because rays in case 4 typically have a much larger
sampling range, and the overall rendering quality primarily
relies on the largest sampling interval. To mitigate this issue
and minimize the maximum sampling interval while staying
within the constraints of limited GPU memory, we propose an
Adaptive Sampling Strategy. This strategy allows for different
numbers of points to be sampled on rays while ensuring that
the sampling interval on each ray remains similar. We im-
plement this strategy using CUDA as differentiable PyTorch
functions. For more details refer to Appendix.

Integrated SDF for Volume Densities
Gaussian Mixture for SDF-to-density Function. The den-
sity of semi-transparent volumes is determined using the SDF-
to-density functions σ(x) = Ψ(−Φ(x)). However, we have
observed that the Ψ function used in previous works (Yariv
et al. 2021; Wang et al. 2021) yields a smooth surface while
being successful at capturing intricate geometric details. To
address this issue, we introduce the learnable Gaussian mix-
ture model for SDF-to-density:

σ(x) =

K∑
k=0

αk · exp(− (Φ(x)− µk)
2

β2
k

), (6)

where αk, βk and µk are learnable parameters for k-th Gaus-
sian mixtures. Figure 2b shows how our Gaussian mixture
functions allows to model fine-grained details as well as suc-
cessfully reconstruct hair.
Integrated SDF with Cone Cast. However, unlike previ-
ous approaches that solely perform volume rendering, we
have identified inconsistencies and visible artifacts on the
geometry during hybrid rendering, as can be observed in the
bottom-right visualization of Figure 5. These artefacts result
from inaccuracies in estimating volume densities near the
outer surface. Inspired by mip-NeRF (Barron et al. 2021),
we propose to consider the ray as a cone rather than a single
infinitesimally narrow line within the volume rendering re-
gion. To this aim, we investigate the evaluation of the SDF
expected value within a conical frustum (a section of the
cone) for each sample.

As Figure 2a shows, the apex of that cone lies at o with the
axis along the viewing ray. The radius of the cone at location
o+ t · d is r. The set of positions x within a conical frustum
between [t− h, t+ h] is:

F(x,o,d, r, t, h) = 1

{
(t− h < dT(x− o) < t+ h)

∧
(
dT(x− o)

∥x− o∥2
>

t√
t2 + r2

)}
,

(7)
where 1 is an indicator function: F (x, ·) iff x is within the
conical frustum defined by (o,d, r, t, h).
Theorem 1. Inside a uniform signed distance field, where
gradient directions on each location are parallel, given a
known SDF value sc at location xc and gradient direction
nc, the SDF value s at any location x is computed as

s = Φ(x) = sc + nc · (xc − x). (8)

The proof of this theorem is provided in Appendix. By
assumption of the uniform SDF within each conical frustum,
we compute the expected SDF values following Theorem 1:

E[s] =

∫
Φ(x) · F (x,o,d, r, t, h) dx∫

F (x,o,d, r, t, h) dx
. (9)

Here we compute both E[s] and E[s2], for the details, refer
to the Appendix,

E[s] = sc +
2h

3t
· dTnc,

E[s2] = s2c +
t2h2 · (dTnc)

2 + 4t · h2sc · dTnc

3t2 + h2
,

(10)
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and thus,

E[(Φ(x)− µk)
2] = E[s2]− 2 · µkE[s] + µ2

k. (11)

Replacing the SDF value with the expectation in Eq. 6 gives
the integrated Gaussian mixture SDF-to-density function:

σ(x) =

K∑
k=0

αk · exp(−E[(Φ(x)− µk)
2]

β2
k

), (12)

Note the proposed integrated SDF can also be used in other
SDF-to-density functions (Yariv et al. 2021; Wang et al. 2021)
Ψ(E[Φ(x)]).

Training
Our framework consists of three modules with learnable
parameters: i) the SDF network Φ(x), ii) the implicit renderer
C = M(x̂, n̂,d, f), and iii) the SDF-to-density function
Ψ(s). We train our network by randomly sampling a set of
pixels on each training image and minimize the sum of the
overall loss computed on each pixel:

L = Lrgb + wmaskLmask + wELE + wSpLSp, (13)

where wmask, wE , and wSp are weights that balance each
loss term.
Mask Loss Lmask. We use a state-of-the-art human mat-
ting technique (Lin et al. 2021) to extract a saliency of the
foreground instance, which provides an object likelihood
per pixel. We threshold the saliency with thrs = 0.002 and
thrh = 0.9 to generate the mask ground truth Oh and Os

for both SDF Φh(x) and Φs(x). Then a binary cross-entropy
(BCE) loss is used to train the SDF network,

Lmask = BCE(Φh(x̂), Oh) + BCE(Φs(x̂), Os). (14)

Photometric Loss Lrgb. We compute the L1 loss between
the constructed RGB value and the ground truth value:

Lrgb =
∑
p∈M

∥Cp − Ĉp∥, (15)

where M is the mask of foreground regions, Ĉp is the ground-
turth color on pixels p.
Specularity Loss LSp. We introduce a new loss to regularize
the spurious specularity appearing during novel view synthe-
sis, which could cause color drifting to white or black. This
loss penalizes sudden changes in the derivatives of appear-
ance w.r.t. viewing direction, that is,

LSp = ∥∂M(x̂, n̂,d, f)

∂d
∥2. (16)

Eikonal Loss LE . We use the Eikonal regularization on both
SDFs (Gropp et al. 2020), i.e.,

LE = Ex[(∥∇Φh(x)∥ − 1)2] + Ex[(∥∇Φs(x)∥ − 1)2]. (17)

where x is uniformly distributed inside the scene.
Additional Details. We follow IDR (Yariv et al. 2020) to pass
through gradients toward the traced surface points. Note that
different from IDR, in HISR, the differentiable surface points
get gradients not only from the implicit renderer, but also
from sampling locations in the volume rendering. We also
improve the surface tracing process, for additional details
refer to Appendix.

Experiments
Implementation Details
We implement our framework using PyTorch. Specifically,
we use the Adam optimizer (Kingma and Ba 2014) with the
learning rate lr = 0.005 and train for 6000 epochs per scene.
At each training step, we randomly sample 7200 pixels with
80% inside the saliency. For volume rendering, we adaptively
sample at most 400K points among all viewing rays in the
translucent regions at each rendering step. We use a NVIDIA
Tesla V100 GPU for training and it takes ∼30h to train on
each instance, and 110s to render each image in the original
2K resolution. As a comparison, NeRF takes 204s, IDR 68s,
NeuS 380s and VolSDF 670s.

Datasets
We evaluate the effectiveness of our approach on three diverse
datasets, encompassing real and synthetic human data, as
well as a separate dataset for objects. This comprehensive
evaluation allows us to showcase the broad applicability and
versatility of our approach across different applications.
WIDC dataset contains sequences of real humans in motion
captured with a 3dMD full-body scanner. The 3dMD scanner
comprises 32 to 35 calibrated high-resolution RGB cameras
(2048 × 2448) that capture a human in motion performing
various actions and facial expressions and output a recon-
structed 3D geometry and texture per frame. These scans can
be noisy but capture facial expressions and fine-level details
like cloth wrinkles. For each instance, we use 26 cameras for
training, which focus on different body parts, and the other 6
to 9 cameras for evaluation, which capture the entire human.
Examples of training images are provided in Appendix.
SynHuman dataset is generated by rendering a high-
resolution animated 3D human model wearing synthetic
clothes, including a simulated t-shirt and pants. Additionally,
the dataset includes a hair groom with realistic hair strands,
presenting a challenging test environment for our proposed
approach. For training, we render images from 24 different
cameras, while evaluation is conducted using images ren-
dered from 6 distinct cameras for each instance. In total, we
evaluate our approach on three instances within the dataset,
allowing for a comprehensive assessment of its performance.
THUman dataset (Su et al. 2023) consists 128 viewing cam-
eras from 4 scenes, with ∼ 10 invalid cameras for each
scene. Although we attempted to align the camera calibration
as provided by the authors, we encountered an issue with
slight displacement in the translation of the instance. This
discrepancy may stem from the PyTorch3D camera system
we utilized, which does not account for lens distortion in the
capture system. To mitigate this, we optimized the transla-
tion during the training phase. Specifically, we employed an
Adam optimizer to adjust the object’s translation for each
camera, using a learning rate of 1e − 4. While we success-
fully trained our model on the THUman dataset, quantitative
evaluations remain challenging due to the calibration issue.
Also, due to the same reason, we are not able to provide
comparisons with baselines on this dataset.
DTU dataset (Aanæs et al. 2016) comprises multi-view im-
ages (49 or 64 views) of various objects, captured using a
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Figure 4: Qualitative comparisons with state-of-the-art approaches on novel view synthesis on WIDC dataset. To protect their
privacy, we mask out part of people’s faces.

PSNR ↑ S1.1 S1.2 S1.3 S2 S3 S4 S5.1 S5.2 S6 S7 S8.1 S8.2 Avg.
Nerf 28.62 31.65 29.62 24.72 29.33 32.67 26.42 26.76 26.06 23.39 21.21 27.47 27.33
IDR 27.98 30.73 31.37 24.84 29.33 30.01 26.40 26.39 26.74 27.74 28.55 28.85 28.24
VolSDF 28.01 30.37 30.28 24.52 25.94 29.79 25.75 26.28 21.92 23.44 31.14 30.51 27.33
Neus 29.05 31.91 32.30 26.17 30.76 32.90 27.54 27.48 27.77 28.86 31.88 32.19 29.90
GS 30.39 33.19 33.58 27.68 33.61 34.89 30.49 30.24 30.23 30.21 33.60 34.15 31.85
Ours 31.51 34.41 34.07 28.57 33.76 35.14 30.62 31.34 30.51 31.16 34.49 34.48 32.49

Table 2: Quantitative results and comparisons of PSNR between novel view synthesis and ground truth captures on WIDC
dataset. Best scores are in bold.

light stage setup. This dataset provides a ground truth point
cloud that serves as the basis for evaluating geometry recon-
struction. In our work, we follow the settings established in
previous research (Yariv et al. 2020). Specifically, we utilize
a subset of 15 scenes from the dataset following previous

works.

Baselines and Evaluation Metrics
Baselines consist of NeRF (Mildenhall et al. 2020),
IDR (Yariv et al. 2020), VolSDF (Yariv et al. 2021),

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5303



w/o Int. SDFNeuSRef. Mesh IDR VolSDFImage Ours

Figure 5: Qualitative comparisons with state-of-the-art approaches on geometry reconstruction. To show the details, we visualize
both ours and baseline method with reconstructed surface normals. w/o Int. SDF is the ablation experiment for ours without the
proposed integrated SDF.

CD∗ ↓ S1.1 S1.2 S1.3 S2 S3 S4 S5.1 S5.2 S6 S7 S8.1 S8.2 Avg.
Nerf 10.94 7.39 10.76 – – 40.10 12.80 11.81 67.09 – 68.56 – –
IDR 4.14 5.56 2.57 5.66 4.44 83.61 3.85 7.62 18.71 3.68 36.36 25.68 16.82
VolSDF 4.10 5.71 1.05 8.09 36.80 96.88 3.45 8.79 29.63 99.93 22.44 20.06 28.08
Neus 2.92 3.26 1.43 5.05 2.43 26.14 5.16 6.94 5.02 7.07 11.09 14.60 7.59
Ours 1.39 2.06 1.83 4.81 6.30 7.87 3.31 6.16 3.86 4.46 11.98 17.79 5.99

Table 3: Quantitative results and comparisons of Chamfer Distance (CD) between novel view synthesis and reference mesh
reconstruction in WIDC dataset. Best scores are in bold.

NeuS (Wang et al. 2021), and Gaussian Splatting (GS) (Kerbl
et al. 2023). For each baseline, we adapt the ray sampling and
scene boundary to ensure the instance is placed inside the
sampled range. Each baseline is trained for 6000 epochs on
each scene. For NeuS and VolSDF, the mask loss proposed in
NeuS is used during training. We observe NeRF and VolSDF
may fail to converge and might generate empty images. If
this happens, we retrain the approach until convergence and
stop after three unsuccessful tries.
Evaluations are conducted for measurement of both novel
view synthesis and reconstructed geometries. Specifically,
we evaluate predicted novel views via PSNR, which com-
puted via the L2 distance of groundtruth and reconstructed
images. For the geometry, we first use the Marching Cubes
algorithm (Lorensen and Cline 1987) to extract the surface
mesh of the trained SDF. We use single-direction Chamfer
Distance (CD∗) for evaluation, which only computes the L1
distance from each vertex on ground truth mesh to the con-

PSNR ↑ CD ∗ ↓
with Gaussian Density 29.91 17.30

with Laplacian Density 29.76 30.86
w/o integrated SDF 30.28 20.41
w/o specularity loss 25.25 23.18

with Translucent region only 25.23 —
with Opaque region only 27.81 —

full model 30.34 5.99

Table 4: Ablation studies on WIDC dataset. Best scores are
in bold.

structed one. This is because the captured 3D scans (i.e.,
reference mesh) from 3dMD system may contain missing
surfaces, as shown in Figure 5. For DTU datasets, we use the
standard evaluation metrics PSNR and CD, following (Yariv
et al. 2020). We also qualitatively evaluate the reconstructed
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Figure 6: Qualitative comparisons for reconstructed geometry and novel view synthesis on SynHuman dataset

Figure 7: Comparison for reconstructed surface normals and reconstructed meshes. Specifically, we render the reconstructed
meshes of Ours on the same pose of the rendered surface normals, and we concatenate them side-by-side.

geometry by visualizing the surface normals.

Quantitative Results and Qualitative Comparisons
WIDC. In Table 2 and Table 3, we provide a quantitative
comparison between our method and various strong base-
lines. The results demonstrate that our approach outperforms
all works in terms of both RGB reconstruction and recon-
structed geometries. It is worth noting that the NeRF baseline
may encounter difficulties in reconstructing via Marching
Cubes if there are insufficient volumes with densities larger
than the threshold value of thr = 50. In such cases, these
entries in the table are denoted as ”—”. Figures 4 and 5
show the reconstructed geometries and novel view synthesis.
The visualizations clearly showcase that our method excels
in capturing fine-level geometric details compared to other
reconstruction techniques. It is notable that our approach
achieves better performance across the board and accurately
reconstructs people with different hair styles and skin tones.
Furthermore, our method exhibits a high level of rendering
fidelity on the boundaries, surpassing approaches that solely
rely on volume rendering.
SynHuman. In addition, we showcase the outcomes on the
SynHuman dataset in Figure 6 and Table 6. The qualitative
results highlight a substantial improvement in cloth recon-
struction by our method compared to the baselines. Specifi-
cally, our approach yields more precise wrinkle details and
lessens texture confusion with the geometries of the cloth.

These outcomes demonstrate the exceptional reconstruction
quality attained through our methodology.
THUman. Qualitative results demonstrate our approach per-
forms well in general 3D human reconstruction applications.
From the results, we can observe we obtain high-fidelity re-
construction on both cloth and hair. Also, the results show
our approach is feasible to achieve significantly better recon-
struction quality with more multi-view input images, even
with inaccurately calibrated cameras.
DTU. Table 5 and Figure 8 show the reconstruction results
on the DTU dataset. The quantitative results illustrate sig-
nificant improvements achieved by our method compared to
the baseline method, i.e.IDR. Experiments on DTU dataset
demonstrate that although HISR is specially designed for
reconstruction of 3D humans, it can effectively perform re-
construction of generic objects. The visualization of surface
normals shows ours more fine-grained details on the recon-
structed geometry. As shown in the first column in Figure
8, “ours” achieves significantly better reconstruction of the
geometry of the region under the scissors on the top.

Ablation Studies
In Table 4, we provide an ablation study to assess the individ-
ual contributions of each proposed module. In particular, we
ablate the Laplace function and the single Gaussian function
used in VolSDF and NeuS, which serve as replacements for
our proposed Gaussian Mixture density. The results clearly
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Figure 8: Qualitative comparisons for reconstructed geometry and novel view synthesis on DTU Dataset.

DTU PSNR ↑ CD ↓
Scene ID IDR Ours IDR Ours

24 23.55 24.39 1.24 0.90
37 21.08 22.53 1.22 0.56
40 24.62 25.66 0.87 1.08
55 23.64 24.07 0.39 0.33
63 25.47 26.47 0.54 0.39
65 23.26 26.55 0.82 0.54
69 22.36 24.31 0.42 0.49
83 21.97 24.42 2.22 2.17
97 23.16 24.18 0.92 0.51
105 22.97 26.73 0.99 1.00
106 22.17 26.04 0.51 0.84
110 23.07 23.86 0.97 1.36
114 25.04 25.81 0.25 0.43
118 24.18 26.25 0.54 0.49
122 27.42 27.30 0.63 0.44

Average 23.60 25.24 0.84 0.77

Table 5: Quantitative comparisons on DTU dataset.

indicate that these choices significantly reduce the quality of
the reconstruction. Furthermore, we evaluate HISR without
the integrated SDF module, by relying solely on the SDF
value at the center of the conical frustum. For this ablation,
we also show a qualitative comparison with our full approach
in Figure 5. The results highlight the substantial contribution
of the integrated SDF in achieving accurate reconstructed
geometry. Then we perform an ablation study on the specu-
larity loss, demonstrating its efficacy as a valuable regularizer
that benefits both novel view synthesis and reconstruction
tasks. Finally, we also report the novel view synthesis results
when only rendering translucent or opaque regions, the re-
sults demonstrate both translucent or opaque are significantly

PSNR ↑ CD ↓
IDR 31.65 6.85

VolSDF 32.43 7.10
NeuS 33.21 10.58
Ours 35.69 5.66

Table 6: Quantitative comparisons on SynHuman dataset.

contribute to the final reconstruction.

Conclusion

In this paper, we introduced HISR, a novel hybrid implicit
surface representation for photo-realistic 3D human recon-
struction, employing a unique volume rendering scheme to
maintain surface detail and realism. Our method computes
the expected Signed Distance Function (SDF) values within
a conical frustum, enhancing the quality of reconstructed
geometry. Evaluated across various human and object recon-
struction datasets, our approach surpasses baseline methods
in both reconstructed geometry fidelity and novel view syn-
thesis. This is due to our dual surface layer representation
for opaque and translucent regions, allowing for nuanced
rendering of complex human features like skin, hair, and
clothing. In conclusion, our hybrid representation signifi-
cantly advances neural reconstruction and rendering, partic-
ularly in handling heterogeneous geometries. Our approach
achieves state-of-the-art results in 3D human reconstructions
and shows promise in other objects.
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Işık, M.; Rünz, M.; Georgopoulos, M.; Khakhulin, T.; Starck,
J.; Agapito, L.; and Nießner, M. 2023. HumanRF: High-
Fidelity Neural Radiance Fields for Humans in Motion. ACM
Transactions on Graphics (TOG), 42(4): 1–12.
Jiang, Y.; Hedman, P.; Mildenhall, B.; Xu, D.; Barron, J. T.;
Wang, Z.; and Xue, T. 2022. AligNeRF: High-Fidelity Neu-
ral Radiance Fields via Alignment-Aware Training. arXiv
preprint arXiv:2211.09682.
Kajiya, J. T.; and Herzen, B. P. V. 1984. Ray tracing volume
densities. ACM Transactions on Graphics, 18(3): 165–174.
Kerbl, B.; Kopanas, G.; Leimkühler, T.; and Drettakis, G.
2023. 3D Gaussian Splatting for Real-Time Radiance Field
Rendering. ACM Transactions on Graphics, 42(4).
Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Lin, S.; Yang, L.; Saleemi, I.; and Sengupta, S. 2021. Robust
High-Resolution Video Matting with Temporal Guidance.
arXiv preprint arXiv:2108.11515.
Lombardi, S.; Saragih, J.; Simon, T.; and Sheikh, Y. 2018.
Deep appearance models for face rendering. ACM Transac-
tions on Graphics, 37(4): 1–13.
Lorensen, W. E.; and Cline, H. E. 1987. Marching cubes:
A high resolution 3D surface construction algorithm. ACM
Siggraph Computer Graphics, 21(4): 163–169.
Mescheder, L.; Oechsle, M.; Niemeyer, M.; Nowozin, S.;
and Geiger, A. 2019. Occupancy networks: Learning 3d
reconstruction in function space. In IEEE Conference on
Computer Vision and Pattern Recognition.
Mildenhall, B.; Srinivasan, P. P.; Tancik, M.; Barron, J. T.;
Ramamoorthi, R.; and Ng, R. 2020. NeRF: Representing
Scenes as Neural Radiance Fields for View Synthesis. In
European Conference on Computer Vision.
Muller, T.; Evans, A.; Schied, C.; and Keller, A. 2022. In-
stant neural graphics primitives with a multiresolution hash
encoding. ACM Transactions on Graphics, 41(4): 1–15.
Noguchi, A.; Sun, X.; Lin, S.; and Harada, T. 2021. Neural
articulated radiance field. In IEEE International Conference
on Computer Vision.
Oechsle, M.; Peng, S.; and Geiger, A. 2021. UNISURF:
Unifying Neural Implicit Surfaces and Radiance Fields for
Multi-View Reconstruction. In IEEE International Confer-
ence on Computer Vision.
Park, J. J.; Florence, P.; Straub, J.; Newcombe, R.; and Love-
grove, S. 2019a. DeepSDF: Learning Continuous Signed
Distance Functions for Shape Representation. In IEEE Con-
ference on Computer Vision and Pattern Recognition.
Park, J. J.; Florence, P.; Straub, J.; Newcombe, R.; and Love-
grove, S. 2019b. Deepsdf: Learning continuous signed dis-
tance functions for shape representation. In IEEE Conference
on Computer Vision and Pattern Recognition.
Peng, S.; Zhang, Y.; Xu, Y.; Wang, Q.; Shuai, Q.; Bao, H.; and
Zhou, X. 2021. Neural Body: Implicit Neural Representations
with Structured Latent Codes for Novel View Synthesis of
Dynamic Humans. In IEEE Conference on Computer Vision
and Pattern Recognition.
Pesavento, M.; Volino, M.; ; and Hilton, A. 2022. Super-
resolution 3D Human Shape from a Single Low-Resolution
Image. In European Conference on Computer Vision.
Pumarola, A.; Corona, E.; Pons-Moll, G.; and Moreno-
Noguer, F. 2021. D-nerf: Neural radiance fields for dynamic
scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 10318–10327.
Saito, S.; Huang, Z.; Natsume, R.; Morishima, S.; Kanazawa,
A.; and Li, H. 2019. PIFu: Pixel-Aligned Implicit Function
for High-Resolution Clothed Human Digitization. In IEEE
International Conference on Computer Vision.
Saito, S.; Simon, T.; Saragih, J.; and Joo, H. 2020. PI-
FuHD: Multi-Level Pixel-Aligned Implicit Function for High-
Resolution 3D Human Digitization. In IEEE Conference on
Computer Vision and Pattern Recognition.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5307



Su, Z.; Yu, T.; Wang, Y.; and Liu, Y. 2023. DeepCloth: Neural
Garment Representation for Shape and Style Editing. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
45(2): 1581–1593.
Wang, A.; Kortylewski, A.; and Yuille, A. 2021. Nemo:
Neural mesh models of contrastive features for robust 3d
pose estimation. arXiv preprint arXiv:2101.12378.
Wang, A.; Ma, W.; Yuille, A.; and Kortylewski, A. 2023a.
Neural Textured Deformable Meshes for Robust Analysis-
by-Synthesis. arXiv preprint arXiv:2306.00118.
Wang, A.; Wang, P.; Sun, J.; Kortylewski, A.; and Yuille,
A. 2022a. VoGE: a differentiable volume renderer using
gaussian ellipsoids for analysis-by-synthesis. In The Eleventh
International Conference on Learning Representations.
Wang, C.; Wang, A.; Li, J.; Yuille, A.; and Xie, C. 2023b.
Benchmarking robustness in neural radiance fields. arXiv
preprint arXiv:2301.04075.
Wang, P.; Liu, L.; Liu, Y.; Theobalt, C.; Komura, T.; and
Wang, W. 2021. NeuS: Learning Neural Implicit Surfaces by
Volume Rendering for Multi-view Reconstruction. In Annual
Conference on Neural Information Processing Systems.
Wang, T.; Zhang, B.; Zhang, T.; Gu, S.; Bao, J.; Baltrusaitis,
T.; Shen, J.; Chen, D.; Wen, F.; Chen, Q.; et al. 2022b. Rodin:
A Generative Model for Sculpting 3D Digital Avatars Using
Diffusion. arXiv preprint arXiv:2212.06135.
Wang, Y.; Han, Q.; Habermann, M.; Daniilidis, K.; Theobalt,
C.; and Liu, L. 2022c. NeuS2: Fast Learning of Neural Im-
plicit Surfaces for Multi-view Reconstruction. arXiv preprint
arXiv:2212.05231.
Weng, C.-Y.; Curless, B.; Srinivasan, P. P.; Barron, J. T.;
and Kemelmacher-Shlizerman, I. 2022. Humannerf: Free-
viewpoint rendering of moving people from monocular video.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 16210–16220.
Westover, L. 1990. Footprint evaluation for volume rendering.
In Proceedings of the 17th annual conference on Computer
graphics and interactive techniques, 367–376.
Xu, Q.; Xu, Z.; Philip, J.; Bi, S.; Shu, Z.; Sunkavalli, K.;
and Neumann, U. 2022. Point-nerf: Point-based neural radi-
ance fields. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 5438–5448.
Yariv, L.; Gu, J.; Kasten, Y.; and Lipman, Y. 2021. Volume
Rendering of Neural Implicit Surfaces. In Annual Conference
on Neural Information Processing Systems.
Yariv, L.; Hedman, P.; Reiser, C.; Verbin, D.; Srinivasan,
P. P.; Szeliski, R.; Barron, J. T.; and Mildenhall, B. 2023.
BakedSDF: Meshing Neural SDFs for Real-Time View Syn-
thesis. arXiv preprint arXiv:2302.14859.
Yariv, L.; Kasten, Y.; Moran, D.; Galun, M.; Atzmon, M.;
Ronen, B.; and Lipman, Y. 2020. Multiview Neural Surface
Reconstruction by Disentangling Geometry and Appearance.
In Annual Conference on Neural Information Processing
Systems.
Zwicker, M.; Pfister, H.; Van Baar, J.; and Gross, M. 2001.
EWA volume splatting. In IEEE Conference on Visualization.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5308


