
Supplemental Material

A. Physics Simulation

In the following, we recapitulate the physical model and

provide more details on the derivations and the particular

discretization scheme used.

Strong Form Let the reference configuration be given in

Ωr. The displacement at time t is given by u : Ωr×t → R
3.

Then the linear Green strain tensor is given by

E(u) :=
1

2

(

∇u+ (∇u)T
)

∈ R
3×3 (1)

and the Piola-Kirchoff stress tensor

P (u) := 2µE(u) + λ tr(E(u))1 (2)

with the Lamé coefficients µ and λ derived from the Young’s
modulus k and the Poisson ratio ρ. The dynamic elasticity
problem in strong form is then defined as

mü− divP (u) =fB in Ωr × R
+
0 (3a)

u =uD on Γr
D × R

+
0 (3b)

P (u) · n = fS in Γr
N × R

+
0 (3c)

u = u
0

in Ωr × {0} (3d)

u̇ = u̇
0

in Ωr × {0} , (3e)

with the mass m, Dirichlet boundaries Γr
D and Neumann

boundaries Γr
N . In order to arrive at linear system of equa-

tions, we follow the classical FEM theory and first trans-

form the strong form into the weak form. Then we plug

in the discretization scheme in Supp. A.1 and the matrices

emerge.

Weak Form To obtain the weak form, let V :=
H1(Ω̄r → R

d) be the space of test and trial functions.

Because Neumann and Dirichlet boundaries are enforced

weakly, the space of test and trial functions coincide. Start-

ing from the right hand side of Eq. (3a), the generalized

divergence theorem yields:
∫

Ω
fB · v dx =

=

∫

Ω
− divP (u) · v dx+

∫

Ω
mü · v dx

=

∫

Ω

d∑

j=1

(

µ

(

∇uj +
∂

∂xj

u

)

+ λ

d∑

i=1

∂ui

∂uj

1j

)

· ∇vj dx

−

∫

∂Ω

d∑

j=1

((

µ

(

∇uj +
∂

∂xj

u

)

+ λ

d∑

i=1

∂ui

∂uj

1j

)

· n

)

vj ds

+

∫

Ω
mü · v dx.

(4)

A.1. Hexahedral Finite Element Discretization

The weak form is now discretized using hexahedral ele-

ments. This splits the domain Ω into the disjoint union of

each cell Ω =
⋃

e Ω
e, which allows us to decompose the full

equation (4) into per-element expressions. For example,

∫

Ω

mü · v dx =
∑

e

∫

Ωe

mü · v dx. (5)

We use standard trilinear shape functions as basis func-

tions for the finite hexahedral elements (see Fig. 1).

1 2

3

4
6

7 8

x

y

z

N1(x) :=
(

1−
x

h

)(

1−
y

h

)(

1−
z

h

)

N2(x) :=
x

h

(

1−
y

h

)(

1−
z

h

)

.

.

.

N8(x) :=
x

h

y

h

z

h

Figure 1: Trilinear hexahedral element and embedded sur-

face

Thus, inside a cell, any function f can be approximated

by trilinear interpolation of its values at the eight corners vi

as

f(x) ≈

8
∑

i=1

f(vi)Ni(x). (6)

Partially Filled Cells We further embed the object

boundary into the simulation grid, and consider cells that

are partly filled with material. For cells of size [0, 1]3, and

the object given as signed distance function φ, we define the

part of a cell that is contained in the object as

Ωe := {x ∈ [0, 1]3 : φ(x) ≤ 0}. (7)

For a trilinear interpolation within cells, integrals of arbi-

trary functions over cells can be approximated as

∫

Ωe
f(x) dx ≈

∫

Ωe

8∑

i=1

f(vi)Ni(x) dx =
8∑

i=1

f(vi)

∫

Ωe
Ni(x) dx

︸ ︷︷ ︸

=:wv(e,i)

(8)

where the integrals of the basis functions wv are precom-

puted and stored per cell. As cell vertices do not necessarily

lie on the object surface, we use Nitsche’s method [1, 4] to

incorporate Dirichlet boundaries.

Discrete Equations With the basis functions from Fig. 1

we arrive at the following per-element expressions:
∫

Ωe
mü · v dx = (ve)T

∫

Ωe
Φe(x)TmΦe(x) dx

︸ ︷︷ ︸

=:Me∈R24×24

üe

∫

Ωe
µ . . .+ λ . . . dx = (ve)T

∫

Ωe
Be(x)TCBe(x) dx

︸ ︷︷ ︸

=:Ke∈R24×24

ue

∫

Γe
N

fS · v ds = (ve)T
∫

Γe
N

Φe(x)T dx fS

︸ ︷︷ ︸

=:fe∈R8

(9)

Here, Φe(x) ∈ R
3×24 and Be(x) ∈ R

6×24, respectively,

store for each coordinate the values of the basis functions

Ni and the derivatives.

Be(x) :=

∂N1(x)
∂x1

∂N8(x)
∂x1

∂N1(x)
∂x2

∂N8(x)
∂x2

∂N1(x)
∂x3

· · ·
∂N8(x)
∂x3

∂N1(x)
∂x2

∂N1(x)
∂x1

∂N8(x)
∂x2

∂N8(x)
∂x1

∂N1(x)
∂x3

∂N1(x)
∂x1

∂N8(x)
∂x3

∂N8(x)
∂x1

∂N1(x)
∂x3

∂N1(x)
∂x2

∂N8(x)
∂x3

∂N8(x)
∂x2

(10)

C ∈ R
6×6 is the regular material matrix for the chosen

Lamé coefficients.

After these per-element expressions are combined to

large matrices spanning the whole domain, the linear sys-

tem Mü+Ku = f emerges.

Corotation To handle large rotations, we utilize the coro-

tation formulation [7, 3]. First, the rotational part Re of the

deformation of cell e is extracted. Let the average deforma-

tion gradient F e be computed as

F e = 13 +
1

4h

8
∑

i=1

us(e,i)

(−1)i

(−1)⌈i/2⌉

(−1)1⌈i/4⌉

T

. (11)

The rotational component Re is then given by the polar de-

composition F e = ReSe and can be computed with itera-

tive procedures [3, 6], or a more robust, but also more ex-

pensive Analytic Polar Decomposition [5]. Second, given

Re, the per-element term Ke
u
e is replaced by

ReKe((Re)T (xe + u
e)− x

e). (12)

A.2. Blocked Expressions for Matrix Assembly

One advantage of our chosen discretization is that the

per-element stiffness matrix Ke (Eq. (9)) has a 3× 3 block

structure that is highly amenable to optimized implemen-

tations. Each block describes the interactions between the

coordinates of the two corresponding cell nodes. Modulo

index variations, the computation of these 3x3 blocks is

identical for all 64 blocks. Furthermore, the corotational

strain formulation and Nitsche Dirichlet boundaries can be

incorporated into the block-wise decomposition in a straight

forward way.

The regular block structure facilitates storing the stiff-

ness matrix K in a blocked compressed-sparse-row (CSR)

format. During assembly, work groups can process a sin-

gle cell in parallel. Reductions within the cell, as needed,

e.g., for the computation of corotations and gradients, can

be performed efficiently with warp-reductions. By includ-

ing analytic simplifications of the basis function evaluations

(and their derivatives), we arrive at a highly GPU-friendly

algorithm that yields good performance.

The evaluation of the per-element stiffness matrix Ke is

performed blockwise. Each of the 8×8 blocks Ke
i,j ∈ R

3×3

are computed in parallel. Let
∂Ni(vc)

∂xi
be the derivatives of

the basis functions at the eight cell corner. This 8 × 8 × 3
table only contains the entries − 1

h , 0 or 1
h . It is stored in

constant memory on the GPU and hence allows fast access

via the cache. The per-block expression for the stiffness

matrix Ke, see Eq. (9) for the definition, is given by:

Ki,j(x) =

(2µ + λ)
∂Ni(x)

∂x1

∂Nj(x)

∂x1
+ µ

(

∂Ni(x)
∂x2

∂Nj(x)

∂x2
+

∂Ni(x)
∂x3

∂Nj(x)

∂x3

)

µ
∂Ni(x)

∂x1

∂Nj(x)

∂x2
+ λ

∂Ni(x)
∂x2

∂Nj(x)

∂x1

µ
∂Ni(x)

∂x1

∂Nj(x)

∂x3
+ λ

∂Ni(x)
∂x3

∂Nj(x)

∂x1

,

µ
∂Ni(x)

∂x2

∂Nj(x)

∂x1
+ λ

∂Ni(x)
∂x1

∂Nj(x)

∂x2

(2µ + λ)
∂Ni(x)

∂x2

∂Nj(x)

∂x2
+ µ

(

∂Ni(x)
∂x1

∂Nj(x)

∂x1
+

∂Ni(x)
∂x3

∂Nj(x)

∂x3

)

µ
∂Ni(x)

∂x2

∂Nj(x)

∂x3
+ λ

∂Ni(x)
∂x3

∂Nj(x)

∂x2

,

µ
∂Ni(x)

∂x3

∂Nj(x)

∂x1
+ λ

∂Ni(x)
∂x1

∂Nj(x)

∂x3

µ
∂Ni(x)

∂x3

∂Nj(x)

∂x2
+ λ

∂Ni(x)
∂x2

∂Nj(x)

∂x3

(2µ + λ)
∂Ni(x)

∂x3

∂Nj(x)

∂x3
+ µ

(

∂Ni(x)
∂x1

∂Nj(x)

∂x1
+

∂Ni(x)
∂x2

∂Nj(x)

∂x2

)

.

(13)

A.3. Nitsche Dirichlet Boundaries

To incorporate Dirichlet boundaries with Nitsche’s

method, the weak form from Eq. 9 is extended using pro-

ductive zeros u− u0:

−

∫

Γr
N

P (u)·n·v ds−

∫

Γr
N

P (v)·n·(u−u0) ds−η

∫

Γr
N

(u−u0)·v ds .

(14)

The first term makes the resulting linear system symmet-

ric. The second term enforces the Dirichlet boundaries. The

third term acts as a regularizer and the parameter η has to

be chosen as η ≥ ch−1 with h being the grid size and c a

sufficient large constant. In our experiments, we chose 108

for stable results.

These boundary conditions can also be formulated in an

efficient, blocked matrix form. First, the definition of P (u)

(Eq. (2)) is used, leading to the following terms that are

added to the weak form (Eq. (4)):

−

∫

Γe
D

3∑

j=1

µ

∇uj · n +
∂u

∂xj

· n

 + λnj

3∑

i=1

∂ui

∂xi

 vj ds

︸ ︷︷ ︸

(I)

−

∫

Γe
D

3∑

j=1

µ

∇vj · n +
∂v

∂xj

· n

 + λnj

3∑

i=1

∂vi

∂xi

uj ds

︸ ︷︷ ︸

(I’)

− η

∫

Γe
D

u · v ds

︸ ︷︷ ︸

(II)

(15)

Expressing u and v using the basis functions and their

derivatives, combined in Φe and Be, we obtain

Ke −=

∫

Γe
D

Φe(x)TDeBe(x) ds (16)

for (15.I) with De given by

De :=

2µn1 + λn1 λn1 λn1

λn2 2µn2 + λn2 λn2

λn3 λn3 2µn3 + λn3

 . (17)

Here, the equation for (15.I’) is the above equation, just

transposed. This integral is evaluated by computing the sum

of the values at the eight corners weighted by wb(e, c). The

value of Φi evaluated at vertex c has the special property

that Φi = 13 1i=c. This allows us to derive the follow-

ing simplification and solution of Eq. (16), combining both

(15.I) and (15.I’):

KDj,c :=

B1(λn1 + 2µn1) +B2µn2 +B3µn3

B2µn1 +B1λn2

B3µn1 +B1λn3

 ,

B2λn1 +B1µn2

B1µn1 +B2(λn2 + 2µn2) +B3µn3

B3µn2 +B1λn3

 ,

B3λn1 +B1µn3

B3λn2 +B2µn3

B1µn1 +B2µn2 +B3(λn3 + 2µn3)

 ∈ R
3×3

(18)

with Bi :=
∂Nj(vc)

∂xi

Ki,j −=wb(e, i)KDj,i + wb(e, j)KDT
i,j . (19)

Part (15.II) even simplifies to the following expression:

Ki,j −= 1i=jηwb(e, i)13. (20)

A.4. Time integration

Once the stiffness matrix K, the mass matrix M and

the force vector f are assembled from the per-element ma-

trices, we introduce Raleigh damping via a matrix D =
α1M + α2K, where α1 specifies the mass damping and

α2 the stiffness damping. The resulting linear system solve

the resulting linear system

Mü+Du̇+Ku = f (21)

is then solved per timestep t with a Newmark scheme that

takes the following form [2]:
(

1

θ∆t
M +D + θ∆tK

)

u(t)

=

(
1

θ∆t
M +D + (1− θ)∆tK

)

u(t−1) +
1

θ
Mu̇(t−1) +∆tf

(22)

with 1
2 ≤ θ < 1 and

u̇(t) =
1

θ∆t
(u(t) − u(t−1))−

1− θ

θ
u̇(t−1). (23)

If f is time-dependent, we perform a time-splitting of the

forces in Eq. (24) to improve the numerical stability of the

collisions. This splitting scheme is given by

f = θf (t) + (1− θ)f (t−1). (24)

The hyper-parameter θ in the Newmark time integration

scheme was set to 0.6 in all of our experiments. As con-

firmed by our tests, values of θ between 0.5 and 0.75 do not

result in noticeable differences. Only for large timesteps

and low Rayleigh damping, values of θ = 0.99 and above

can introduce undesirable damping. A visual comparison

of different values of θ can be found in the supplemental

video.

B. Newton Solver for Tri-linear Interpolation

In Sect. 4, a Newton solver for finding the interpolation

weights given the interpolated values is used. Its details are

described below:

Recall that the standard tri-linear interpolation is given

as

f(α, β, γ) = (1− α)(1− β)(1− γ)x1 + α(1− β)(1− γ)x2

+ · · ·+ αβγx8

= z1 + αz2 + βz3 + γz4 + αβz5 + αγz6 + βγz7

+ αβγz8.

(25)

Then, a Newton iteration is computed as

αβγt+1 = αβγ − J−1f(αβγt), (26)

with

J =

|
z2 + βz5 + γz6 + βγz8 · · ·

|

 . (27)

being the Jacobian.

C. Adjoint Code Examples

In this section we present the adjoint code of selected op-

erations. The derivatives for every operation are omitted for

space constraints. They can be found in the source code2.

C.1. Adjoint Code of the SSC cost function

To compute gradients for the SSC cost function within

the adjoint framework, we need to compute the adjoint of

the inverse of the cell-wise tri-linear interpolation. There-

fore, we define the tri-linear interpolant

E(u = {α, β, γ}, p = {z1, ..., z8}) := z1 + αz2 + βz3 + γz4+

αβz5 + αγz6 + βγz7 + αβγz8 − x = 0.

(28)

and compute its derivative with respect to the control points

p = (z1, ..., z8) as

F =
∂E

∂p
= −

| | | | | | | |
1 α β γ αβ αγ βγ αβγ

| | | | | | | |

 ∈ R
3×8.

(29)

With this matrix, the adjoint variables of z1 to z8 are com-

puted as (ẑ1, ..., ẑ8) = (α′, β′, γ′)F . Finally, the adjoint

values ẑ1, ..., ẑ8 are added to the adjoint values of the per-

vertex displacements ûi,j,k, ..., ûi+1,j+1,k+1, by taking the

adjoint of the mapping from x1, ...,x8 to z1, ..., z8 that is

given by the tri-linear interpolation.

The gradients, given on the whole computational do-

main, are transferred back to the active nodes with the ad-

joint of the Eulerian extensions of the displacements. If the

current simulation shows large differences to the observa-

tions, some points are typically matched with cells that lie

outside the object. The adjoint of the extension step then

”pulls back” the gradients from these points onto the ob-

ject’s surface and connects them to the Lagrangian simula-

tion. Next, we discuss how to compute the gradients of the

damping parameters.

C.2. Adjoint Code of the damping parameters

The adjoint code of the damping parameters is presented

here as an example. For a variable x of the forward step, x̂
denotes the adjoint/gradient of that variable. One simulation

timestep is split as follows:

1. Computation of stiffness matrix K.

2. Computation of Rayleigh damping matrix D =
α1M + α2K where α1 and α2, respectively, are the

damping on mass and stiffness.

3. Newmark time integration Eq. (22).

In the adjoint code, these steps are performed in reverse

order. One adjoint simulation timestep is split as follows:

1. Adjoint of Newmark time integration → D̂

2https://github.com/shamanDevel/

SparseSurfaceConstraints

2. Adjoint of Rayleigh damping:

M̂ = α1D̂ , K̂ = α2D̂ (30a)

α̂1 = vec(M) • D̂ , α̂2 = vec(K) • D̂. (30b)

3. Adjoint of stiffness matrix using K̂ among others.

The adjoint variables α̂1 and α̂2 are summed up for every

timestep, giving rise to the final gradients for these parame-

ters.

D. Physical Units

The material estimates are performed in a virtual, unit-

less coordinate system. To convert the estimated values to

physical units, the simulated gravity needs to be scaled to

relate the object’s size in the virtual space to its size in the

real world. Furthermore, the object’s mass (the Young’s

modulus depends on it) and the time step are required. Since

the object’s mass cannot be recovered from the observa-

tions, we weigh the objects beforehand. The time step is

given by the camera framerate, i.e. 60 fps.

More specifically, we measure the size of of the object S′

in virtual meters m′ via the signed distance function of the

input φ0 that defines the object in reference configuration

Ωr. Given the size of the object S in meters, we can com-

pute the first scaling factor fsize = S/S′ in m/m′. Next, let M
in kg be the mass of the real object. The parameter m in the

physical model Eq. (3) specifies the mass density. Hence the

virtual mass M ′ in kg′ is given by M ′ = mV where V is

the object’s volume computed as V = f3
size

∫

Ωr
1 dx . The

scaling factor for the mass is then given as fmass = M/M ′

in kg/kg′. Last, we parameterize the simulation with the real-

world time step, hence ftime = 1s/1s′. With these scaling fac-

tors, we can convert the value of the virtual Young’s mod-

ulus k (see Sect. 3) into real-world units. The unit of the

Young’s modulus is Pascal (kg m/s2), hence the real-world

value is given as k · fmassfsize/f2
time. Similarly, let g be the re-

constructed gravitational acceleration in virtual units. The

real-world gravity is then given by g · fsize/f2
time.

E. Extended Stability Analysis

In the following we demonstrate the robustness of our

solver by comparing reconstructions to synthetic ground

truth values.

E.1. Gradient Stability for Varying Number of
Timesteps and Noise

We first investigate the robustness of the gradients com-

puted by our differentiable solver for the SSCs when vary-

ing the number of steps over time, and when introducing

noise. The following tests are performed with the torus data

set shown in Fig. 2, and show gradient evaluations when

varying the Young’s modulus estimate around a ground

(a) (b) (c) (d)

Figure 2: For different noise and camera settings, our op-

timizer was used to estimate the torus Young’s modulus.

From left to right, images show simulations using the min-

imal, maximal, reconstructed and ground truth values. Our

reconstruction (c) closely matches the ground truth in (d).

truth value of 5000 along the x-axis. I.e. we expect the

cost (shown in blue in the following graphs) to have a min-

imum at 5000, while the gradient (shown in red in terms of

it’s magnitude) should be negative to the left of 5000, and

positive on the right side.

The insights we gain from the plots in Fig. 3 are twofold:

First, the more timesteps are simulated, the more do numer-

ical errors in the adjoint pass accumulate and the noisier the

gradients become. Note, however, that the torus a rather

difficult test case as it exhibits strong deformations. De-

spite this effect, the gradients retain the correct sign, i.e.,

overall direction of the gradient, visible in Fig. 3 from the

fraction of the red curves above and below the dashed red

line. The negative parts lie on the left side of the ground

truth value of 5000, while positive gradients lie on the right

side. Second, the simulation becomes more stable with in-

creasing noise magnitude. The increase in noise leads to a

smoothing of the point assignments, reducing outliers, and

hence smoothing the cost function. Furthermore, note that

the absolute value of the cost function is larger for higher

noise values than for lower ones. This is because even in

the optimal case, the observations can be quite far from the

surface due to the noise.

E.2. Finite difference based Gradient Estimation

Next, we compare our proposed gradient estimation to

a finite-difference based estimation. In particular, we shed

light on the influence of finite-difference based gradient es-

timation using the hyper-parameter ∆x in the gradient ap-

proximation f ′(x) ≈ f(x+∆x)−f(x)
∆x on reconstruction ac-

curacy.

Fig. 4 plots the cost function and corresponding gradient

estimates for the torus test case when varying the Young’s

modulus. Especially for a small ∆x of 5 units, the resulting

gradients exhibit strong noise and a large number of sign

flips. This behavior is alleviated for ∆x = 100 in the nega-

tive part of the gradient, but remains critical on the positive

side (above the ground truth value of 5000). In none of the

full optimization runs performed in this work (as presented

in the next section, Supp. E.4) we were able to reach con-

vergence with the finite difference approach. The adjoint

method, in contrast, equipped with our proposed cost func-

tion produces numerically stable and smooth results. The

corresponding case is shown in the middle column of Fig. 4.

E.3. Influence of Diffusion Distance

The diffusion distance φmax (Sect. 4) specifies the size

of the narrow band in the diffusion step, i.e., the maximal

distance an observed point can have to the surface to be con-

sidered in the optimization. In the following, we investigate

its influence on the gradient estimation.

Fig. 5 shows the effect of φmax on the cost function and

gradient estimates, as well as the reconstructed Young’s

modulus. φmax is given in terms of voxels. For small values

below 1, only simulation points very close to the observa-

tion are used. This introduces additional local minima and

leads to gradients with a wrong sign when the current simu-

lation is far from the ground truth (first two plots, left side).

Larger values of φmax yield correct gradients for the full

range of values, although the quality can deteriorate once

values become too large and matching becomes ambiguous.

In all of our experiments, we found a value of φmax between

2 and 5 to produce stable and accurate results.

Note that if a small value for φmax is chosen, it can hap-

pen that few or no points are matched, especially for later

time steps when a simulation deviates from the observa-

tions. This typically does not pose a problem for our op-

timization as long as early time steps tie the simulation

to the observations. As the optimizer converges towards

a tighter match between observations and cells, more and

more points from later timesteps are included in the cost

function and improve the results.

E.4. Optimization Stability Analysis

Next, we consider our full optimization, and compare

how the factors previously discussed for gradient estimation

influence our full algorithm. We sample 20 random start

values for the Young’s modulus and let the optimization find

the optimal value.

We first evaluate the influence of the number of differ-

ent views on the optimization process. The camera loca-

tions are randomly sampled on the hemisphere above the

ground and focus on the center of the torus. As Fig. 6 con-

firms, almost all runs (95% on average, i.e. 19 out of 20)

converge and the number of cameras does not have an in-

fluence on stability, even a single camera provides enough

observations, and multiple views do not negatively affect

the reconstruction quality of our algorithm.

Note that in many case, the Young’s modulus estimates

exhibit slight deviations from the ground truth value of

5000. This is caused by the fact that our data generation step

relies on triangle surfaces generated with Marching Cubes.

The SSC however, directly matches tri-linearly interpolated

SDF values, which hence cannot be matched exactly in most

cases.

1,250 5,000 20,000
0

5 · 10−2

0.1

0.15

N
o

is
e=

0
.0

0
1

C
o

st

Timesteps=20

−6

−4

−2

0

1,250 5,000 20,000
0

20

40

Timesteps=40

−0.6

−0.4

−0.2

0

1,250 5,000 20,000
0

20
40
60
80

Timesteps=80

−0.5

0

0.5

G
ra

d
ie

n
t

1,250 5,000 20,000
0

0.1

0.2

N
o

is
e=

0
.0

1

C
o

st

−8

−6

−4

−2

0

1,250 5,000 20,000
0

20

40

−0.6

−0.4

−0.2

0

1,250 5,000 20,000
0

20
40
60
80

−2

0

G
ra

d
ie

n
t

1,250 5,000 20,000

0.7

0.8

0.9

Young’s modulus

N
o

is
e=

0
.1

C
o

st

−8
−6
−4
−2
0

1,250 5,000 20,000
0

20

40

Young’s modulus

−0.6

−0.4

−0.2

0

1,250 5,000 20,000

20
40
60
80
100

Young’s modulus

−1

−0.5

0

0.5

G
ra

d
ie

n
t

Figure 3: Influence of number of timesteps and camera noise on the cost function and gradient estimates. Test were performed

on the torus data set with φmax = 5.

1,250 5,000 20,000

10

20

30

40

∆
x
=

5
C

o
st

Noise = 0.001

−0.1

−5 · 10−2

0

1,250 5,000 20,000

10

20

30

40

Noise = 0.01

−0.1

−5 · 10−2

0

5 · 10−2

1,250 5,000 20,000
10

20

30

40

Noise = 0.1

−0.1

−5 · 10−2

0

G
ra

d
ie

n
t

1,250 5,000 20,000

10

20

30

40

Young’s modulus

∆
x
=

10
0

C
o

st

−3

−2

−1

0

1,250 5,000 20,000

10

20

30

40

Young’s modulus

−3

−2

−1

0

1,250 5,000 20,000
10

20

30

40

Young’s modulus

−2

−1

0

G
ra

d
ie

n
t

Figure 4: Evaluation of the gradient estimation using finite differences. The test was performed on the torus test case with

φmax = 5 and 40 timesteps. The jaggedness of the red curves, and especially the large number of sign flips visually indicate

that the finite-difference approach is not suitable for optimization.

The previous results are consistent with those we found

when analyzing the influence of the camera resolution on

optimization convergence (see Fig. 7). For one camera, in-

creasing the resolution, and hence using more points in the

cost function, does not improve the optimization.

We also vary the camera noise and diffusion distance, re-

sults for which are shown in Fig. 8. For a low value for φmax

1,2505,00020,000

2
4
6
8

C
o

st
·1
0
2

Young’s modulus

Max SDF = 0.1

−5

0

5

1,2505,00020,000
0

0.2
0.4
0.6
0.8

Young’s modulus

Max SDF = 0.5

−0.2

0

1,2505,00020,000
0

5

10

Young’s modulus

Max SDF = 2

−0.4
−0.2
0
0.2

1,2505,00020,000
0

20

40

Young’s modulus

Max SDF = 5

−0.6

−0.4

−0.2
0

G
ra

d
ie

n
t

Figure 5: Influence of diffusion distance φmax on cost function and gradient estimates for the torus data set (Young’s modulus

= 5000) with camera noise 0.01 and 40 timesteps.

Figure 6: Influence of number of views on optimization convergence for the torus test case, using 40 timesteps, noise=0.1,

maxSdf=5.0, and 20 runs with varying initial Young’s modulus. The average relative error of the converged runs to the

ground truth value is 2.39%, 8.94%, 5.08%, 4.46% for 1, 2, 4, 8 cameras, respectively.

of only one, only 10 of 14 runs converge, the other runs start

with a very low Young’s modulus and get stuck. For a value

of φmax = 5, 13 of 14 runs converge to the ground truth.

This shows that the convergence rate decreases if the width

of the narrow band is chosen too small. In accordance to

previous results from the gradient evaluations in Supp. E.1,

the amount of noise has little influence on the stability of the

optimization. The results get slightly better with increased

noise (more regularization).

Last, we compare the stability of the algorithm for gra-

dients computed with the adjoint method and for gradients

computed with the Finite Different Method and varying ∆x,

see Fig. 9. None of the runs that use the Finite Different

Method converge to the Ground Truth value for the Young’s

modulus, but rather converge to different local minima away

from the ground truth value. This is in accordance to the

gradient analysis in Supp. E.2 that show a very noisy be-

haviour for the gradients. In terms of average relative error,

this manifests itself as an error of over 35% for the runs

with the finite difference method as compared to 1.41% for

the adjoint method

E.5. Stability for Varying Boundary Conditions

To analyze the dependency of the optimization process

on the boundary conditions, we use a scene where a ball

bounces on the ground plane. Six different settings are

used, with randomly sampled orientation and position of

the ground plane, and initial linear velocity of the ball, see

Fig. 10. This leads to strongly differing behavior, i.e., the

ball rolling with very different speeds in different directions.

For each setting, 20 initial values for the Young’s modulus

between 0.1x and 10x the ground truth value of 2000 are

randomly sampled. (Same 20 values for each of the six

settings). The simulation is performed over 20 timesteps

(one bounce), recorded with one virtual camera of resolu-

tion 50x50 and a Gaussian noise with variance of 0.07 vox-

els. The optimization is performed with a maxSDF value of

1 over 30 iterations.

The results are shown in Fig. 11. Between 18 and 20

of the 20 initial values converge to the ground truth. Inter-

estingly, for Young’s Moduli smaller than the ground truth,

the cost function increases first before converging towards

zero. This seems to indicate that the gradients from the ad-

joint method point into the right direction, even though this

is not directly reflected in the cost function value. Despite

this effect, these tests show that our method also robustly

Figure 7: Influence of camera resolution on optimization convergence for the torus test case, using 40 timesteps, noise=0.1,

φmax = 5.0, 20 runs with varying initial Young’s modulus. The average relative error of the converged runs to the ground

truth value of 5000 is 2.71%, 4.62%, 3.05%, 2.56% for a resolution of 202, 502, 1002, 2002, respectively.

Figure 8: Influence of φmax and camera noise on optimization convergence for the torus test case, using 40 timesteps and 14

runs with varying initial Young’s modulus. The average relative error of the converged runs to the ground truth for the tests

from left to right are: 11.96%, 10.75%, 5.57%, 3.01%.

recovers the synthetic ground truth under varying boundary

conditionns.

E.6. Recovering Multiple Parameters

To analyze the stability of the optimization for multi-

ple parameters, we used the bouncing ball test case again

and this time optimize for gravity, the Young’s modulus and

stiffness damping. We sampled 60 different initial config-

urations randomly and let the optimizer run for 20 itera-

tions. The ground truth simulation is shown in Fig. 12 on

the left. The convergence plots for all 60 runs are shown

in Fig. 13. As one can see, all runs converge to a solu-

tion that has almost zero cost. The reconstructed value for

the gravity is quite uniform, but a strong inter-dependency

between Young’s modulus and stiffness damping is clearly

seen. Despite differing values, the reconstructions very

closely match the ground truth.

E.7. Different Optimizers

Throughout our work, we use the R-Prop optimizer for

the reconstruction. Here we compare it to a simple Gradi-

ent Descent optimizer and the L-BFGS optimizer. While R-

Prop only uses the sign of the gradient to determine the next

search direction, Gradient Descent also uses the norm of the

gradient with an additional adaptive step size, so we would

expect faster convergence. L-BFGS approximates the Hes-

sian matrix and as a second-order method should converge

even faster.

We compared the three optimizers on three different test

cases, the fixed Stanford dragon (see Fig. 14, the bouncing

ball from Supp. E.5 and the pillow-ramp test case Fig. 8d.

To clearly see the behaviour of the different optimizers

when started from the same initial configurations, we only

used one or two runs per setting. The results are shown in

Fig. 15 and Fig. 16.

Figure 9: Comparison of the optimization when the gradients are computed with the adjoint method (left) or with finite

differences with different values for ∆x. For clarity, only seven runs are shown. Note that none of the runs with finite

differences comes close to the ground truth solution. The average relative error of all runs to the ground truth value of 5000

is 1.41%, 35.14%, 39.33% for the adjoint method and finite differences with ∆x = 5, 100, respectively. Especially, runs

with initial values that are far away from the ground truth don’t converge with the finite differences.

Figure 10: The six ground orientations used to test the in-

dependence of the optimization from boundary conditions.

The images show the substantially different collision behav-

ior for each case.

For the first two test cases, the Dragon and Bouncing

Ball, both the R-Prop and the Gradient Descent algorithm

converge to a solution (see Fig. 14c) that is indistinguish-

able from the ground truth. Gradient Descent converges

faster as expected. The L-BFGS algorithm is often too ag-

gressive in choosing the step size, which leads to the op-

timization getting stuck in sub-optimal local minima (see

Figure 15b. Furthermore, it uses the values of the cost func-

tion itself to determine the step size, which can lead to insta-

bilities if the cost function only increases when the solution

improves. This is the case for the bouncing ball test case

when started from a low value for the Young’s modulus,

see Supp. E.5. These two sources of instability lead to a

divergent optimization with the L-BFGS algorithm for the

bouncing ball, see Figure 15c.

In the multi-parameters optimization, the Gradient De-

scent algorithm has severe problems. See e.g. Fig. 16 for

an example of the Pillow-Ramp test case where the Gradi-

ent Descent algorithm completely diverges and leads to a

state where the simulation collapses. We believe that this

is because Gradient Descent uses the same step size for all

parameters. R-Prop and L-BFGS both use a different step

size for each parameter. In the test case using the pillow, the

L-BFGS starts to oscillate and gets stuck in a sub-optimal

local minimum. R-Prop behaves much smoother and finds

a good solution.

F. Real-World Test Cases

Here we analyze the convergence of our algorithm for

real-world scenarios, as presented in Sect. 6.2. Recon-

structed parameter values for the best five runs are given

in Table 1 for the Teddy, Table 2 for the Pillow-Ramp and

Table 3 for the Pillow-Flat data set. Furthermore, Fig. 17

shows selected frames and the convergence plots for the

Pillow-Flat example. The statistics and timings are depicted

in Table 4.

References

[1] J. Benk, M. Ulbrich, and M. Mehl. The Nitsche

method of the Navier-Stokes Equations for Immersed

Boundaries. In Seventh International Conference on

Computation Fluid Dynamics (ICCFD7), 2012.
[2] Chris Greenough. Newmark’s method of direct

integration. HTTP://WWW.SOFTENG.RL.AC.UK/

ST/PROJECTS/FELIB3/DOCS/HTML/INTRO/INTRO-

NODE52.HTML, 2001. Accessed: 05/17/2018.
[3] Michael Hauth and Wolfgang Strasser. Corotational

simulation of deformable solids. Journal of WSCG,

12(1-3), 2003.
[4] Mika Juntunen and Rolf Stenberg. Nitsche’s method

for general boundary conditions. Mathematics of

Computation, 78(267):1353–1374, 2009.
[5] Tassilo Kugelstadt, Dan Koschier, and Jan Bender.

Fast corotated fem using operator splitting. Computer

Graphics Forum (SCA), 37(8), 2018.
[6] Ken Shoemake and Tom Duff. Matrix animation and

polar decomposition. In Proceedings of the confer-

Figure 11: Same scene, a ball bounces on the floor, with different boundary conditions. Six random settings for the ground

plane configuration and initial linear velocity.

(a)

(b) (c)

Figure 12: Multi-parameter optimization for the bouncing ball test case. Ground truth (a) and the initial and reconstruction

configuration for the two runs with the highest initial cost (b, c). Even though the reconstructed values are different from the

ground truth, the output visually matches the ground truth.

ence on Graphics interface, volume 92, pages 258–

264, 1992.
[7] Eftychois D. Sifakis. Fem simulation of 3d de-

formable solids: A practitioner’s guide to theory,

discretization and model reduction: Part one: The

classical fem method and discretization methodology,

2012.

Figure 13: Bouncing ball, optimized for gravity, Young’s modulus and stiffness damping. All 60 initial samples converge

to a solution that has almost zero cost and visually same behaviour (see Fig. 12). The values for the Young’s modulus and

stiffness damping, however, strongly differ, showing their inter-dependency.

(a)
(b) (c) (d)

Figure 14: Optimization of the Young’s modulus on the Dragon. From left to right: minimal and maximal initial value,

reconstruction and ground truth.

0 20 40
0

0.1

0.2

Iteration

C
o

st

a) Dragon 1

0 20 40
1

2

3

·10−2
b) Dragon 2

0 10 20

0

0.5

1

c) Bouncing Ball

0 20 40

1,000

5,000

10,000

Iteration

Y
o

u
n

g
’s

m
o

d
u

lu
s

0 20 40

5,000

7,500

Iteration

0 10 20

103

104

105

Iteration

R-Prop

Gradient Descent

L-BFGS

Figure 15: Comparison of the different optimizers for different scenes.

Figure 16: Comparison of the different optimizers for the Pillow-Ramp example

Run 14 15 18 3 1

Initial Cost 143.924 109.387 134.841 136.685 136.551

Recon. Cost 8.461 8.506 8.693 8.747 8.810

Gravity -1.536 -1.526 -1.538 -1.521 -1.530

Young’s Modulus 7.817 8.126 8.690 7.840 7.383

Mass Damping 0.240 0.086 0.080 0.122 0.102

Stiffness Damping 0.027 0.033 0.018 0.040 0.043

Table 1: Reconstructed Parameter values from the teddy data set. Only the five best runs are shown.

Run 7 12 4 18 9

Initial Cost 589.252 605.694 550.197 402.254 383.658

Recon. Cost 59.816 91.852 125.231 164.708 170.164

Gravity -0.710 -1.430 -1.681 -0.805 -1.573

Young’s Modulus 209.421 142.042 914.497 839.310 1143.883

Mass Damping 0.068 0.064 0.071 0.176 0.044

Stiffness Damping 0.044 0.082 0.864 0.176 0.184

Ground Height 0.127 0.179 0.181 -0.009 0.009

Ground Theta 1.188 1.229 1.034 1.288 1.222

Ground Phi 1.480 1.226 1.622 1.502 1.466

Table 2: Reconstructed Parameter values from the Pillow-Ramp data set. Only the five best runs are shown.

Run 8 7 3 5 2

Initial Cost 249.871 154.268 456.128 587.173 116.719

Recon. Cost 21.126 29.303 30.233 34.395 48.241

Gravity -0.872 -0.883 -1.031 -1.017 -1.038

Young’s Modulus 9.200 37.206 233.827 9.191 18.835

Mass Damping 0.078 0.051 0.119 0.425 0.046

Stiffness Damping 0.015 0.008 0.011 0.014 0.011

Table 3: Reconstructed Parameter values from the Pillow-Flat data set. Only the five best runs are shown.

Ball Teddy Pillow-Fl. Pillow-R.

active nodes 770 2440 3836 4390

elements 516 1716 2848 3284

diffused nodes 2605 14612 19006 21530

timesteps 20 100 450 175

cameras 1 1 1 1

Camera res. 50x50 320x240 320x240 320x240

Obs. n’th 1 5 5 5

φmax 2 10 10 10

ini. cond. 20-60 18 10 15

Forw. sim. (s) 0.077 0.803 0.240 0.264

Cost eval. (s) 0.199 0.165 0.085 0.153

Adj. sim. (s) 0.058 0.764 0.213 0.292

iter. steps 30 50 50 50

Table 4: Timings (per timestep) and model statistics. ”Obs. n’th” denotes the interval in simulation steps between observa-

tions, ”Ini. cond.” denotes the number of randomly perturbed initial conditions.

(a) Color Observation

(b) Depth Observation

(c) Initial configuration for the optimization

(d) Reconstructed solution

(e) Optimization started from 10 different initial values. The best five runs are drawn in color, the very best run is drawn in

thick lines and displayed in the renderings above.

Figure 17: Selected frames and plots of the optimization process for the Pillow-Flat test case. The rows of (a-d) each show a

sequence of steps over time.

